立即打开
中国、美国和欧洲正在加紧量子计算军备竞赛,谁会胜出?

中国、美国和欧洲正在加紧量子计算军备竞赛,谁会胜出?

François Candelon, Maxime Courtaux, Gabriel Nahas, Jean-François Bobier 2022-09-08
一国若输掉量子计算竞赛,将会削弱其全球竞争力。

图片来源:COURTESY OF GETTY IMAGES

每个国家都争相在未来世界量子竞赛中抢占先机。一年前,美国、英国和澳大利亚联手开发数字技术的军事应用,尤其是量子计算技术。此前,美国国会(U.S. Congress)于2019年通过了《国家量子倡议法案》(National Quantum Initiative Act),该法案提出了美国快速建立量子计算能力的计划。

此前,欧洲在2016年启动了一项10亿美元的量子计算研究项目——量子旗舰计划(Quantum Flagship),其成员国已经开始建设量子通信基础设施,该基础设施将于2027年投入使用。同样,中国的“十四五规划”(2021—2025)也将在2030年之前优先发展量子计算和通信。总体而言,2019年至2021年间,为了成为未来的量子超级大国,中国共计投资了110亿美元,欧洲投资了50亿美元,美国投资了30亿美元,英国投资了约18亿美元。

随着量子技术的科学发展势头强劲,制造量子计算机已经成为希望在数字时代获得下一个竞争优势的国家的优先事项。它们寻求这一优势有两个截然不同的原因。一方面,量子技术可能会改变几乎所有行业,从汽车、航空航天到金融和制药。根据波士顿咨询公司(BCG)最近的估计,这些系统在未来15年至30年可能创造4,500亿美元至8,500亿美元的新价值。

另一方面,量子计算系统将对全世界的网络安全构成重大威胁。黑客将能够使用它们来破译RSA密码系统生成的公钥,并突破任何传统加密设备、系统或网络的安全性。它将对个人、机构、公司和国家政府构成强大的网络威胁,通常称为Y2Q(Years to Quantum,量子年)。后者别无选择,只能通过开发诸如后量子密码学等对策来应对这一前所未有的挑战,而这本身就需要使用量子系统。

自工业革命以来,各国经历了艰难的历程才认识到,量子计算等通用技术对竞争力至关重要。以半导体制造业为例,最近美国、中国、韩国和中国台湾地区占据主导地位。由于新冠肺炎疫情和其他因素导致过去两年半导体产量突然下降,汽车、计算机和电信硬件等150多个行业停产和价格上涨。欧盟(European Union)的成员国、巴西、印度、土耳其甚至美国等许多国家都受到重创,目前正在努力重建其半导体供应链。同样,中国制造了世界上大部分的电池,而美国仅占全球产量的7%左右。这就是为什么美国最近宣布了财政激励措施,以鼓励企业在国内创造更多的电池生产能力。

如果国家和公司不立即专注于增加其量子主权,情况可能就会更糟。由于此类系统的开发和部署需要公共和私营部门的共同努力,因此,政府将其在这两方面做出的努力与其他国家做出的努力进行比较是很重要的。

美国有望成为量子计算的全球领跑者,依靠国际商用机器公司(IBM)、谷歌(Google)等科技巨头发明量子系统,以及大量初创公司来开发软件应用程序。据波士顿咨询公司估计,初创公司吸引了风险投资和私募股权基金在量子计算领域近50%的投资。虽然美国政府仅拨款了11亿美元,但它已经建立了有效协调所有机构的工作机制,例如美国国家标准与技术研究院(NIST)、美国国防部高级研究计划局(DARPA)、美国国家航空航天局(NASA)和国家量子倡议(NQI)。

紧跟在美国后面的是中国,中国政府在开发量子系统上的投入比其他任何国家都要多。这些投资促进了学术研究,根据估计,2021年中国的研究成果占世界研究成果总量的10%以上——仅次于美国。溢出效应是显而易见的:在谷歌的量子机器在几分钟内解决了一个超级计算机可能需要数千年才可以解开的计算难题后不到一年,中国科学技术大学就解决了一个比它难三倍的问题。截至2021年9月,中国的初创公司数量没有美国那么多,但它依赖阿里巴巴、百度和腾讯等数字巨头来开发量子应用程序。

欧盟的量子计算成就仅次于美国和中国,由其成员国和欧盟共同推动。欧盟的量子旗舰计划协调整个欧洲大陆的研究项目,但这些工作尚未完全协调一致。法国和德国等国的一些重要举措存在重复的风险,或者没有充分利用协同效应。虽然欧盟已经催生了几家致力于不同级别技术堆栈的初创公司——比如芬兰的IQM和法国的Pasqal——但由于后期资金短缺,许多公司似乎不太可能扩大规模。事实上,根据波士顿咨询公司的估计,欧盟的初创公司吸引的资金仅为美国同行的七分之一左右。

最后,英国是世界上最早启动政府资助的量子计算计划的国家之一。英国依靠教育政策和大学、研究生学位奖学金和博士培训中心来取得成功。与欧盟一样,英国也催生了一些有前景的初创公司,例如Orca,该公司在去年宣布推出世界上最小的量子计算机。然而,英国的初创公司可能无法找到足够的资金来扩大规模,许多公司很可能被美国的数字巨头收购。

澳大利亚、加拿大、以色列、日本和俄罗斯等其他国家也加入了量子计算竞赛,并能够为自己开辟出一席之地。比如,加拿大有几家很有前景的初创公司,例如“数字退火”计算机的领导者D-Wave;而日本则利用公共资金,计划在2023年3月之前开发出国产量子计算机。

“量子主权”的四大关键

与此同时,量子计算产业的重心正在转向开发应用程序和采用该技术面临的挑战。这种转变为各国,尤其是追随者提供了赶上领导者的机会,以免为时已晚。政府必须协同使用四种手段来加速其量子主权建设:

* 奠定基础。如果各国政府希望随着时间的推移开发量子系统,就必须投入比目前更多的投资,即使它们与他国建立合作伙伴关系以在短期内将技术带回国内。一旦确保硬件安全后,各国必须创建共享基础设施以扩大产业规模。例如,荷兰建立了量子激励平台(Quantum Inspire),为用户提供执行量子计算的硬件。

* 协调利益相关者。政府应该利用资金和影响力来协调公共和私人参与者的工作,比如美国量子协调办公室(U.S. Quantum Coordination Office)就是这样做的。此外,决策者必须联系利益相关者以支持这项技术的开发。例如,美国能源部(U.S. Department of Energy)就是这样与芝加哥大学(University of Chicago)进行合作的:它们共同建立了一个加速器,将初创公司与投资者和科学专家联系起来。

* 促进过渡。政府必须支持企业向量子经济过渡。政府应该提供货币激励措施——比如税收抵免、基础设施援助、无息或低息融资以及免费用地——这样现有企业就会迅速转向量子技术。例如,英国最近扩大了其研发税收减免计划,将量子技术投资纳入其中。

* 培养商业人才。政府制定的政策不仅要培养学者和科学家,还必须促进培养可以在量子业务中担任关键角色的新一代创业和执行人才。比如,为了加快这一进程,瑞士政府帮助创建了硕士项目,而不是只提供该学科的博士项目。

并不是所有的通用技术都像量子计算那样影响一个国家的安全和主权,但它们都对竞争力至关重要。虽然许多国家都在谈论发展量子能力,但它们的努力并没有像美国和中国那样转化为重大进展。现在的情况是,每个政府都应该记住,如果输掉量子计算竞赛,其技术独立性将会受到侵蚀——而且,与薛定谔的猫不同的是,毫无疑问,其全球竞争力也将下降。(财富中文网)

译者:中慧言-王芳

每个国家都争相在未来世界量子竞赛中抢占先机。一年前,美国、英国和澳大利亚联手开发数字技术的军事应用,尤其是量子计算技术。此前,美国国会(U.S. Congress)于2019年通过了《国家量子倡议法案》(National Quantum Initiative Act),该法案提出了美国快速建立量子计算能力的计划。

此前,欧洲在2016年启动了一项10亿美元的量子计算研究项目——量子旗舰计划(Quantum Flagship),其成员国已经开始建设量子通信基础设施,该基础设施将于2027年投入使用。同样,中国的“十四五规划”(2021—2025)也将在2030年之前优先发展量子计算和通信。总体而言,2019年至2021年间,为了成为未来的量子超级大国,中国共计投资了110亿美元,欧洲投资了50亿美元,美国投资了30亿美元,英国投资了约18亿美元。

随着量子技术的科学发展势头强劲,制造量子计算机已经成为希望在数字时代获得下一个竞争优势的国家的优先事项。它们寻求这一优势有两个截然不同的原因。一方面,量子技术可能会改变几乎所有行业,从汽车、航空航天到金融和制药。根据波士顿咨询公司(BCG)最近的估计,这些系统在未来15年至30年可能创造4,500亿美元至8,500亿美元的新价值。

另一方面,量子计算系统将对全世界的网络安全构成重大威胁。黑客将能够使用它们来破译RSA密码系统生成的公钥,并突破任何传统加密设备、系统或网络的安全性。它将对个人、机构、公司和国家政府构成强大的网络威胁,通常称为Y2Q(Years to Quantum,量子年)。后者别无选择,只能通过开发诸如后量子密码学等对策来应对这一前所未有的挑战,而这本身就需要使用量子系统。

自工业革命以来,各国经历了艰难的历程才认识到,量子计算等通用技术对竞争力至关重要。以半导体制造业为例,最近美国、中国、韩国和中国台湾地区占据主导地位。由于新冠肺炎疫情和其他因素导致过去两年半导体产量突然下降,汽车、计算机和电信硬件等150多个行业停产和价格上涨。欧盟(European Union)的成员国、巴西、印度、土耳其甚至美国等许多国家都受到重创,目前正在努力重建其半导体供应链。同样,中国制造了世界上大部分的电池,而美国仅占全球产量的7%左右。这就是为什么美国最近宣布了财政激励措施,以鼓励企业在国内创造更多的电池生产能力。

如果国家和公司不立即专注于增加其量子主权,情况可能就会更糟。由于此类系统的开发和部署需要公共和私营部门的共同努力,因此,政府将其在这两方面做出的努力与其他国家做出的努力进行比较是很重要的。

美国有望成为量子计算的全球领跑者,依靠国际商用机器公司(IBM)、谷歌(Google)等科技巨头发明量子系统,以及大量初创公司来开发软件应用程序。据波士顿咨询公司估计,初创公司吸引了风险投资和私募股权基金在量子计算领域近50%的投资。虽然美国政府仅拨款了11亿美元,但它已经建立了有效协调所有机构的工作机制,例如美国国家标准与技术研究院(NIST)、美国国防部高级研究计划局(DARPA)、美国国家航空航天局(NASA)和国家量子倡议(NQI)。

紧跟在美国后面的是中国,中国政府在开发量子系统上的投入比其他任何国家都要多。这些投资促进了学术研究,根据估计,2021年中国的研究成果占世界研究成果总量的10%以上——仅次于美国。溢出效应是显而易见的:在谷歌的量子机器在几分钟内解决了一个超级计算机可能需要数千年才可以解开的计算难题后不到一年,中国科学技术大学就解决了一个比它难三倍的问题。截至2021年9月,中国的初创公司数量没有美国那么多,但它依赖阿里巴巴、百度和腾讯等数字巨头来开发量子应用程序。

欧盟的量子计算成就仅次于美国和中国,由其成员国和欧盟共同推动。欧盟的量子旗舰计划协调整个欧洲大陆的研究项目,但这些工作尚未完全协调一致。法国和德国等国的一些重要举措存在重复的风险,或者没有充分利用协同效应。虽然欧盟已经催生了几家致力于不同级别技术堆栈的初创公司——比如芬兰的IQM和法国的Pasqal——但由于后期资金短缺,许多公司似乎不太可能扩大规模。事实上,根据波士顿咨询公司的估计,欧盟的初创公司吸引的资金仅为美国同行的七分之一左右。

最后,英国是世界上最早启动政府资助的量子计算计划的国家之一。英国依靠教育政策和大学、研究生学位奖学金和博士培训中心来取得成功。与欧盟一样,英国也催生了一些有前景的初创公司,例如Orca,该公司在去年宣布推出世界上最小的量子计算机。然而,英国的初创公司可能无法找到足够的资金来扩大规模,许多公司很可能被美国的数字巨头收购。

澳大利亚、加拿大、以色列、日本和俄罗斯等其他国家也加入了量子计算竞赛,并能够为自己开辟出一席之地。比如,加拿大有几家很有前景的初创公司,例如“数字退火”计算机的领导者D-Wave;而日本则利用公共资金,计划在2023年3月之前开发出国产量子计算机。

“量子主权”的四大关键

与此同时,量子计算产业的重心正在转向开发应用程序和采用该技术面临的挑战。这种转变为各国,尤其是追随者提供了赶上领导者的机会,以免为时已晚。政府必须协同使用四种手段来加速其量子主权建设:

* 奠定基础。如果各国政府希望随着时间的推移开发量子系统,就必须投入比目前更多的投资,即使它们与他国建立合作伙伴关系以在短期内将技术带回国内。一旦确保硬件安全后,各国必须创建共享基础设施以扩大产业规模。例如,荷兰建立了量子激励平台(Quantum Inspire),为用户提供执行量子计算的硬件。

* 协调利益相关者。政府应该利用资金和影响力来协调公共和私人参与者的工作,比如美国量子协调办公室(U.S. Quantum Coordination Office)就是这样做的。此外,决策者必须联系利益相关者以支持这项技术的开发。例如,美国能源部(U.S. Department of Energy)就是这样与芝加哥大学(University of Chicago)进行合作的:它们共同建立了一个加速器,将初创公司与投资者和科学专家联系起来。

* 促进过渡。政府必须支持企业向量子经济过渡。政府应该提供货币激励措施——比如税收抵免、基础设施援助、无息或低息融资以及免费用地——这样现有企业就会迅速转向量子技术。例如,英国最近扩大了其研发税收减免计划,将量子技术投资纳入其中。

* 培养商业人才。政府制定的政策不仅要培养学者和科学家,还必须促进培养可以在量子业务中担任关键角色的新一代创业和执行人才。比如,为了加快这一进程,瑞士政府帮助创建了硕士项目,而不是只提供该学科的博士项目。

并不是所有的通用技术都像量子计算那样影响一个国家的安全和主权,但它们都对竞争力至关重要。虽然许多国家都在谈论发展量子能力,但它们的努力并没有像美国和中国那样转化为重大进展。现在的情况是,每个政府都应该记住,如果输掉量子计算竞赛,其技术独立性将会受到侵蚀——而且,与薛定谔的猫不同的是,毫无疑问,其全球竞争力也将下降。(财富中文网)

译者:中慧言-王芳

Every country is vying to get a head start in the race to the world’s quantum future. A year ago, the United States, the United Kingdom, and Australia teamed up to develop military applications of digital technologies, especially quantum computing technologies. That followed the passage in 2019 of the National Quantum Initiative Act by the U.S. Congress, which laid out the country’s plans to rapidly create quantum computing capabilities.

Earlier, Europe launched a $1 billion quantum computing research project, Quantum Flagship, in 2016, and its member states have started building a quantum communications infrastructure that will be operational by 2027. In like vein, China’s 14th Five Year Plan (2021-2025) prioritizes the development of quantum computing and communications by 2030. In all, between 2019 and 2021 China invested as much as $11 billion, Europe had spent $5 billion, the U.S. $3 billion, and the U.K. around $1.8 billion between to become tomorrow’s quantum superpowers.

As the scientific development of quantum technologies gathers momentum, creating quantum computers has turned into a priority for nations that wish to gain the next competitive advantage in the Digital Age. They’re seeking this edge for two very different reasons. On the one hand, quantum technologies will likely transform almost every industry, from automotive and aerospace to finance and pharmaceuticals. These systems could create fresh value of between $450 billion and $850 billion over the next 15 to 30 years, according to recent BCG estimates.

On the other hand, quantum computing systems will pose a significant threat to cybersecurity the world over.Hackers will be able to use them to decipher the public keys generated by the RSA cryptosystem, and to break through the security of any conventionally-encrypted device, system, or network. It will pose a potent cyber-threat, popularly called Y2Q (Years to Quantum), to individuals and institutions as well as corporations and country governments. The latter have no choice but to tackle the unprecedented challenge by developing countermeasures such as post-quantum cryptography, which will itself require the use of quantum systems.

Countries have learned the hard way since the Industrial Revolution that general-purpose technologies, such as quantum computing, are critical for competitiveness. Consider, for instance, semiconductor manufacturing, which the U.S., China, South Korea, and Taiwan area have dominated in recent times. When the COVID-19 pandemic and other factors led to a sudden fall in production over the last two years, it resulted in production stoppages and price increases in over 150 industries, including automobiles, computers, and telecommunications hardware. Many countries, among the members of the European Union, Brazil, India, Turkey, and even the U.S., were hit hard, and are now trying to rebuild their semiconductor supply chains. Similarly, China manufactures most of the world’s electric batteries, with the U.S. contributing only about 7% of global output. That’s why the U.S. has recently announced financial incentives to induce business to create more electric battery-manufacturing capacity at home.

Much worse could be in store if countries and companies don’t focus on increasing their quantum sovereignty right away. Because the development and deployment of such systems requires the efforts of the public and private sectors, it’s important for governments to compare their efforts on both fronts with those of other countries.

The U.S. is expected to be the global frontrunner in quantum computing, relying on its tech giants, such as IBM and Google, to invent quantum systems as well as numerous start-ups that are developing software applications. The latter attract almost 50% of the investments in quantum computing by venture capital and private equity funds, according to BCG estimates. Although the U.S. government has allocated only $1.1 billion, it has created mechanisms that effectively coordinate the efforts of all its agencies such as the NIST, DARPA, NASA, and NQI.

Breathing down the U.S.’s neck: China, whose government has spent more on developing quantum systems than any other. . Those investments have boosted academic research, with China producing over 10% of the world’s research in 2021, according to our estimates—second only to the U.S. The spillover effects are evident: Less than a year after Google’s quantum machine had solved in minutes a calculation that would have taken supercomputers thousands of years to unravel, the University of Science and Technology of China (USTC) had cracked a problem three times tougher. As of September 2021, China hadn’t spawned as many startups as the U.S., but it was relying on its digital giants such as Alibaba, Baidu, and Tencent to develop quantum applications.

Trailing only the U.S. and China, the European Union’s quantum computing efforts are driven by its member states as well as the union. The EU’s Quantum Flagship program coordinates research projects across the continent, but those efforts aren’t entirely aligned yet. Several important efforts, such as those of France and Germany, run the risk of duplication or don’t exploit synergies adequately. While the EU has spawned several startups that are working on different levels of the technology stack—such as Finland’s IQM and France’s Pasqal—many seem unlikely to scale because of the shortage of late-stage funding. In fact, the EU’s startups have attracted only about one-seventh as much funding as their American peers, according to BCG estimates.

Finally, the U.K. was one of the first countries in the world to launch a government-funded quantum computing program. It’s counting on its educational policies and universities; scholarships for postgraduate degrees; and centers for doctoral training to get ahead. Like the EU, the U.K. also has spawned promising start-ups such as Orca, which announced the world’s smallest quantum computer last year. However, British start-ups may not be able to find sufficient capital to scale, and many are likely to be acquired by the U.S.’s digital giants.

Other countries, such as Australia, Canada, Israel, Japan, and Russia are also in the quantum computing race, and could carve out roles for themselves. For instance, Canada is home to several promising startups, such as D-Wave, a leader in annealing computers; while Japan is using public funds to develop a homegrown quantum computer by March 2023.

The four keys to “quantum sovereignty”

Meanwhile, the locus of the quantum computing industry is shifting to the challenges of developing applications and adopting the technology. This shift offers countries, especially the follower nations, an opportunity to catch up with the leaders before it’s too late. Governments must use four levers in concert to accelerate their quantum sovereignty:

* Lay the foundations. Governments have to invest more than they currently do if they wish to develop quantum systems over time, even as they strike partnerships to bring home the technology in the short run. Once they have secured the hardware, states must create shared infrastructure to scale the industry. The Netherlands, for instance, has set up Quantum Inspire, a platform that provides users with the hardware to perform quantum computations.

* Coordinate the stakeholders. Governments should use funding and influence to coordinate the work of public and private players, as the U.S. Quantum Coordination Office, for instance, does. In addition, policymakers must connect stakeholders to support the technology’s development. That’s how the U.S. Department of Energy, for instance, came to partner with the University of Chicago; together, they’ve set up an accelerator to connect startups with investors and scientific experts.

* Facilitate the transition. Governments must support business’s transition to the quantum economy. They should offer monetary incentives—such as tax credits, infrastructure assistance, no- or low-interest financing, and free land—so incumbents will shift to quantum technologies quickly. The U.K., for instance, has recently expanded its R&D tax relief scheme to cover investments in quantum technologies.

* Develop the business talent. Instead of developing only academics and scientists, government policies will have to catalyze the creation of a new breed of entrepreneurial and executive talent that can fill key roles in quantum businesses. To speed up the process, Switzerland, for instance, has helped create a master’s program rather than offering only doctoral programs on the subject.

Not all general-purpose technologies affect a country’s security and sovereignty as quantum computing does, but they’re all critical for competitiveness. While many countries talk about developing quantum capabilities, their efforts haven’t translated into major advances, as in the U.S. and China. It’s time every government remembered that if it loses the quantum computing race, its technological independence will erode—and, unlike with Schrödinger’s cat, there’s no doubt that its global competitiveness will atrophy.

热读文章
热门视频
扫描二维码下载财富APP