立即打开
极寒天气让风力发电机停摆,有什么解决办法?

极寒天气让风力发电机停摆,有什么解决办法?

Katherine Dunn 2021-02-27
建设清洁能源设施,必须考虑极端天气因素。

随着美国得克萨斯州电力的完全恢复,在这个天气状况越发难以预测的时代,得州面临着“大量能源基础设施已经脆弱不堪以及如何预防此类事情再次发生”等诸多长期问题。

在极寒天气的影响下,得州所有事物都未能幸免于难,从生产原油的二叠纪盆地(Permian Basin)到天然气发电厂,再到得州异常独立的电网系统,这个内部相互关联的事故被称之为“完美风暴”和“黑天鹅事件”。然而,结冰的涡轮机(拖累了得州风力发电,但风力发电仅占该州冬季电力供应量的约7%)却受到了异常的重视,一些政客称,得州的可再生能源资源尤为脆弱。

事实上,此次断电的绝大部分原因在于传统发电设施的关闭,尤其是天然气。得州电力可靠性理事会(Electric Reliability Council of Texas)称,得州约80%的电力来自于天然气、煤或核电。

事实上,得州出现酷热和强飓风天气的可能性更大,风力发电机较为脆弱的原因与其他基础设施类似:得州很少下雪。尽管风力发电机已经针对极端天气不断进行了调整,但这类极端天气在这些地区都属于大概率事件。

全球最冷的风力发电厂

在全球较为寒冷的地带,人们很少听到风力发电厂停摆的消息,这是有原因的。维斯塔斯公司(Vestas)从事寒冷气候解决方案开发的高级产品经理布莱恩·道格布雅阁·尼尔森说,像俄罗斯、瑞典北部和加拿大,人们在规划的最初解决段就会考虑极端寒冷天气。维斯塔斯是全球最大的涡轮机制造商。

道格布雅阁·尼尔森对风力发电厂选定地址的气候评估不仅仅包括最低气温,还包括适度和风速。如果没有风的话,涡轮结不结冰是无所谓的。它还涉及评估结冰(会降低涡轮转速,并有可能使涡轮完全停转)在整个年度会对发电带来多大的影响,也就是风力年发电量比例。

尼尔森说,北欧国家有很多风力发电厂,其冬季阴暗潮湿,风力年发电量比例为3%到4%。他指出,用于规避结冰影响的额外投资往往集中在损失达到4%或以上的地区,而10%则代表着“极端严重”的地区。

尽可能地减少结冰的影响可能意味着改变涡轮发电机所处的位置以及它们的排列方式,也可以安装除冰或防结冰产品。对维斯塔斯这类公司来说,这是一项新近开展且不断增长的业务。除冰产品于2018年推出,包括在涡轮转子上直接安装加热面板,这样转子就不会结冰。

这类产品不仅出现在了瑞典和加拿大这类地区,希腊和土耳其的一些风电厂也能够见到其身影。

尼尔森指出:“如果这些地区有山的话,那么自然而然就会有冰和雪。”

另一方面,他注意到,由于近海海水的水温会高一些,因此近海涡轮很少出现这类问题。

像得州这样的地区,这种极寒天气可能每十年发生一次,因此很难进行预测。即便这类十年一遇的风暴极具破坏力,但从商业角度来讲,这类地区的气候不大可能引发除冰技术的使用。

他说,这种调整需要拆掉转子并重新安装,是“一笔巨大的投资”。

热浪、飓风和雷暴

然而与能源设施的其他部件一样,涡轮面临的风险因素不仅仅只有低温或极寒天气。所有类型的极端天气都必须予以考虑。

华氏113度(约合45摄氏度)及以上温度的极高温被认为是更大的威胁。

尼尔森说:“我们更多地将[除冰产品]看作是一种小众产品,在这一领域,高温市场越来越受到关注。”他还表示,该地区似乎越来越多的风电开发项目都存在更大的高温风险,不是超低温风险。

极高温所带来的问题主要在于,涡轮使用的设备会过热并关闭,继而导致发电中断。因此,这些维斯塔斯的涡轮都配备了额外的特殊冷却系统。

他说,涡轮发电机还必须可以在飓风中正常运转,也就是需要安装能够在停电期间使用的备用电源系统,从而让涡轮可以将自身调整至迎风方向,这种技术已经在菲律宾使用。尼尔森还说,同样,位于日本的涡轮则必须能够承受极端的强风和恶劣的雷暴天气。

然而,尽管涡轮必须根据其最有可能面临的气候和极端天气事件不断进行调整,但怪异事件的发生频率越来越高怎么办,例如得州的暴风雪和叙利亚的酷热?涡轮必须有能力承受所有的自然现象吗?

与以往一样,这完全取决于开发商是否愿意花钱来应对各种可能出现的场景。

尼尔森指出:“这也是设计上的折衷。如果标准的涡轮涵盖了所有部件,其价格可能会贵的有点离谱。”

任何基础设施都将受制于快速变化的气候条件,涡轮也面临着同样的问题:未来数十年的气候模型是否可以切实反映涡轮所需的调整,以及得州最终愿意为此付出的资金。(财富中文网)

译者:冯丰

审校:夏林

随着美国得克萨斯州电力的完全恢复,在这个天气状况越发难以预测的时代,得州面临着“大量能源基础设施已经脆弱不堪以及如何预防此类事情再次发生”等诸多长期问题。

在极寒天气的影响下,得州所有事物都未能幸免于难,从生产原油的二叠纪盆地(Permian Basin)到天然气发电厂,再到得州异常独立的电网系统,这个内部相互关联的事故被称之为“完美风暴”和“黑天鹅事件”。然而,结冰的涡轮机(拖累了得州风力发电,但风力发电仅占该州冬季电力供应量的约7%)却受到了异常的重视,一些政客称,得州的可再生能源资源尤为脆弱。

事实上,此次断电的绝大部分原因在于传统发电设施的关闭,尤其是天然气。得州电力可靠性理事会(Electric Reliability Council of Texas)称,得州约80%的电力来自于天然气、煤或核电。

事实上,得州出现酷热和强飓风天气的可能性更大,风力发电机较为脆弱的原因与其他基础设施类似:得州很少下雪。尽管风力发电机已经针对极端天气不断进行了调整,但这类极端天气在这些地区都属于大概率事件。

全球最冷的风力发电厂

在全球较为寒冷的地带,人们很少听到风力发电厂停摆的消息,这是有原因的。维斯塔斯公司(Vestas)从事寒冷气候解决方案开发的高级产品经理布莱恩·道格布雅阁·尼尔森说,像俄罗斯、瑞典北部和加拿大,人们在规划的最初解决段就会考虑极端寒冷天气。维斯塔斯是全球最大的涡轮机制造商。

道格布雅阁·尼尔森对风力发电厂选定地址的气候评估不仅仅包括最低气温,还包括适度和风速。如果没有风的话,涡轮结不结冰是无所谓的。它还涉及评估结冰(会降低涡轮转速,并有可能使涡轮完全停转)在整个年度会对发电带来多大的影响,也就是风力年发电量比例。

尼尔森说,北欧国家有很多风力发电厂,其冬季阴暗潮湿,风力年发电量比例为3%到4%。他指出,用于规避结冰影响的额外投资往往集中在损失达到4%或以上的地区,而10%则代表着“极端严重”的地区。

尽可能地减少结冰的影响可能意味着改变涡轮发电机所处的位置以及它们的排列方式,也可以安装除冰或防结冰产品。对维斯塔斯这类公司来说,这是一项新近开展且不断增长的业务。除冰产品于2018年推出,包括在涡轮转子上直接安装加热面板,这样转子就不会结冰。

这类产品不仅出现在了瑞典和加拿大这类地区,希腊和土耳其的一些风电厂也能够见到其身影。

尼尔森指出:“如果这些地区有山的话,那么自然而然就会有冰和雪。”

另一方面,他注意到,由于近海海水的水温会高一些,因此近海涡轮很少出现这类问题。

像得州这样的地区,这种极寒天气可能每十年发生一次,因此很难进行预测。即便这类十年一遇的风暴极具破坏力,但从商业角度来讲,这类地区的气候不大可能引发除冰技术的使用。

他说,这种调整需要拆掉转子并重新安装,是“一笔巨大的投资”。

热浪、飓风和雷暴

然而与能源设施的其他部件一样,涡轮面临的风险因素不仅仅只有低温或极寒天气。所有类型的极端天气都必须予以考虑。

华氏113度(约合45摄氏度)及以上温度的极高温被认为是更大的威胁。

尼尔森说:“我们更多地将[除冰产品]看作是一种小众产品,在这一领域,高温市场越来越受到关注。”他还表示,该地区似乎越来越多的风电开发项目都存在更大的高温风险,不是超低温风险。

极高温所带来的问题主要在于,涡轮使用的设备会过热并关闭,继而导致发电中断。因此,这些维斯塔斯的涡轮都配备了额外的特殊冷却系统。

他说,涡轮发电机还必须可以在飓风中正常运转,也就是需要安装能够在停电期间使用的备用电源系统,从而让涡轮可以将自身调整至迎风方向,这种技术已经在菲律宾使用。尼尔森还说,同样,位于日本的涡轮则必须能够承受极端的强风和恶劣的雷暴天气。

然而,尽管涡轮必须根据其最有可能面临的气候和极端天气事件不断进行调整,但怪异事件的发生频率越来越高怎么办,例如得州的暴风雪和叙利亚的酷热?涡轮必须有能力承受所有的自然现象吗?

与以往一样,这完全取决于开发商是否愿意花钱来应对各种可能出现的场景。

尼尔森指出:“这也是设计上的折衷。如果标准的涡轮涵盖了所有部件,其价格可能会贵的有点离谱。”

任何基础设施都将受制于快速变化的气候条件,涡轮也面临着同样的问题:未来数十年的气候模型是否可以切实反映涡轮所需的调整,以及得州最终愿意为此付出的资金。(财富中文网)

译者:冯丰

审校:夏林

As power has returned en masse to Texas, the state faces long-term questions about the fragility of its vast energy infrastructure in an age of increasingly unpredictable weather patterns—and how to prevent the outage from happening again.

The freezing temperatures affected everything from the oil-producing Permian Basin, to the natural-gas-fired power plants, to Texas's unusually self-contained grid system—an interconnected failure that's been called a "perfect storm" and a "Black Swan event." But icy rotors, which slowed Texas wind energy production—responsible for only about 7% of the state's winter power—got particular attention, with some politicians claiming the state's renewable energy sources were particularly vulnerable.

In fact, the outages were overwhelmingly because of shutdowns of conventional power infrastructure, particularly gas. About 80% of Texas’s power comes from gas, coal, or nuclear, according to ERCOT, the Electric Reliability Council of Texas.

In fact, in a state where weather is more likely to include scorching heat waves and powerful hurricanes, wind turbines were vulnerable for the same reason other infrastructure was vulnerable: It doesn't usually snow in Texas. While turbines have increasingly been adapted to extreme weather, they've been adapted to extreme weather that those regions are likely to expect.

The world’s iciest wind farms

There's a reason you don't hear about constant wind farm outages in the chillier corners of the world. In places like Russia, northern Sweden, and Canada, extreme cold is something that's accounted for in the earliest stages of planning, says Brian Daugbjerg Nielsen, a senior product manager who works on cold climate solutions at Vestas, the world's largest turbine manufacturer.

An assessment of the climate where a wind farm is to be located includes not just cold, but humidity and wind speed. If the wind isn't blowing, it doesn't much matter if the rotors are icy, Daugbjerg Nielsen points out. It's also a matter of assessing how much that ice—which slows the rotors and potentially stops them moving entirely—could affect production over an entire year, a percentage calculated as annual energy production (AEP).

The Nordic countries, home to vast wind farms and dark, wet winters, have a rate of around 3% to 4%, says Daugbjerg Nielsen. The extra investment in mitigating the impact of the ice is usually triggered in locations that have a 4% loss or above, he says, while 10% represents an "extremely severe" site.

Minimizing the impact of ice could mean changing where the turbines are located and how they're arranged. It could also mean installing de-icing or anti-icing products—a growing and fairly recent area of business for companies like Vestas. De-icing products, launched in 2018, include installing panels directly in the turbine rotors that warm up the rotors, keeping them ice-free.

These kinds of products aren't found just in places like Sweden and Canada; some wind farms in Greece and Turkey have them too.

"If they have mountains, obviously they'll have ice and snow up there as well," points out Daugbjerg Nielsen.

On the flip side, he notes that because water off the coasts tends to be warmer, it's less of an issue for offshore turbines.

Places like Texas, where vicious cold snaps may happen only once a decade, are difficult. Their climates are unlikely to trigger a business case for de-icing technology, even if that once-in-a-decade storm is disastrous.

A retrofit would require removing the rotors and reinstalling them—a "huge investment," he says.

Heat, hurricanes, and lightning

But for turbines—as for other pieces of energy infrastructure—it's not just cold, or even primarily extreme cold, that poses risks. All forms of extreme weather must be accounted for.

Extreme heat, with temperatures of 113 F and above, is arguably an even greater threat.

"We see [de-icing products] more as a niche, where the high-temperature market is becoming more and more a focus," says Daugbjerg Nielsen. He also says there tends to be more wind development in the regions that have greater risks of high temperatures, as opposed to ultralow temperatures.

The problems posed in extremely high temperatures are mainly that the equipment used by the turbine will overheat and shut down, stopping production, so these Vestas turbines are built with additional special cooling systems.

Turbines also must be able to function during hurricanes, he says—which can mean installing backup power systems that can be used during blackouts to allow the turbines to adjust their direction to face the wind—technology that is used in the Philippines. Similarly, turbines in Japan must be adapted to withstand extremely strong wind and severe lightning storms, Daugbjerg Nielsen says.

But while turbines must increasingly be adapted to the climate and extreme weather events they're most likely to face, what happens when freak events—snow in Texas, extreme heat in Siberia—become more common? Should a turbine be able to withstand anything that nature throws at it?

As always, it comes down to just how much developers are willing to invest to anticipate every possible scenario.

"It's also a design tradeoff," points out Daugbjerg Nielsen. "If the standard turbine incorporates everything, it might get a bit too expensive."

As with every piece of infrastructure that will be subject to a rapidly changing climate, turbines face the question of whether climate models for the coming decades can anticipate exactly what kinds of adaptations they'll need, and ultimately—how much Texas is willing to pay.

热读文章
热门视频
扫描二维码下载财富APP