首页 500强 活动 榜单 商业 科技 商潮 专题 品牌中心
杂志订阅

各国须跳出将AI视为一场竞赛的思维,打破零和博弈僵局

Boris Babic
2026-01-17

“AI竞赛”这种说法其实并不恰当。

文本设置
小号
默认
大号
Plus(0条)

图片来源:Getty Images

2025年12月9日,美国总统唐纳德·特朗普宣布,将允许英伟达(Nvidia)H200处理器对华出口,但所有销售额的25%必须上缴给美国政府。这一决定在美国政界引发震动,包括参议员伊丽莎白·沃伦在内的多位人士都指责特朗普“出卖”国家安全。

在全球AI领域,此类零和博弈或竞争性叙事屡见不鲜。例如,Anthropic一方面在国内反复强调AI安全的重要性,而其联合创始人兼首席执行官达里奥·阿莫代在国际上却不断强化“军备竞赛”的叙事,主张通过出口管制来减缓中国的发展速度,以确保美国赢得AI竞赛。《芯片战争》(Chip War)一书的作者克里斯·米勒也持有相似观点。他认为,美国的芯片出口管制措施,例如禁止向中国出售英伟达H100等最先进的GPU,已经“取得成功……显著放缓了中国芯片制造能力的增长”。特朗普本人也在去年7月宣称,美国率先开启了AI竞赛,并将赢得胜利。

这些论调暗示,两大强国正在进行一场双人对决:一方获胜,则另一方必败,赢家将以输家的损失为代价获得重大收益。然而,从理性选择的角度来看,“AI竞赛”这种说法其实并不恰当。双人对决通常具备以下特征:存在一种双方无法共享的竞争性资源,同时该资源又具有非排他性,即任何一方都难以阻止另一方使用。在这种情况下,市场参与者竞争的是“谁能率先获得该资源”。

在1955年的电影《无因的反叛》(Rebel Without a Cause)中,吉姆·斯塔克(詹姆斯·迪恩饰)与宿敌巴兹(科里·艾伦饰)驾车冲向悬崖。若两人都直行,则同归于尽;先转向者告负。如果一人转向、另一人继续冲向悬崖边缘,那么任何一方都无法通过改变策略来改善自身处境——这正是所谓的“纳什均衡”(Nash Equilibrium)。这种结果是非合作性的:如果一方转向,另一方应继续向前冲;但如果一方改为向前冲,另一方就应当转向。

然而,地缘政治语境下的AI生态并非如此。AI模型的使用具有排他性,例如去年萨姆·奥尔特曼决定禁止中国用户使用OpenAI的ChatGPT,但这种使用并不完全具有竞争性(例如,DeepSeek的模型以开源方式发布,任何人都可以在本地运行)。模型的具体部署在某种程度上具有竞争性,因为每增加一名边际用户都会带来能源和数据成本;但奥尔特曼的决定并非出于这方面的考虑。他之所以排除中国用户,是因为他认为美国不应与中国合作。

因此,或许有人主张,向中国出售芯片会助长中国的实力,从而使美国的处境更糟。但这种观点忽视了另一方面的好处,即美国普通中产家庭能以更低价格获取尖端电子产品;同时,全球对美国科技体系的依赖,也为美国提供了重要的战略杠杆。

一些经济学家将这种以非竞争性但具有排他性的资源为特征的情境,称为“猎鹿博弈”。这一概念源自哲学家让-雅克·卢梭在《论人类不平等的起源》(A Discourse on Inequality)中的一个寓言。设想有一群猎人,他们可以选择合作猎捕大型猎物(鹿),也可以单独猎捕小型猎物(兔子)。问题在于:只有合作才能捕到鹿;而每个人都能单独捕捉兔子。在这种博弈中存在两个纳什均衡:要么合作猎鹿,要么单独捕兔。但前者明显优于后者,所以他们应该合作猎鹿。

全球AI竞争与其说是一场竞赛,不如说更接近一场“猎鹿博弈”。无论是在政策、治理还是贸易层面,国家之间的合作所能带来的收益,往往高于各自为战。相反,一旦沟通破裂便会滋生猜疑,并可能引发有害的误判,例如因为高估对方带来的威胁而陷入不断升级的恶性循环,或在冲突中鲁莽地部署AI技术。由此可见,在中美AI博弈中的那只“鹿”,在很大程度上体现在双方共同防范此类失误,以及通过互利共赢的商业化发展,让AI造福更广泛的公众。

从AI带来的操纵、欺骗与胁迫风险,到其在劳动力市场应用所引发的就业替代问题,中国、美国以及世界各国面临着大量共同挑战。要实现互利合作,需要信任、透明与协作,而不是反复无常的政治化操作。唯有如此,才能从“各自捕兔”,走向“合力猎鹿”。

为实现这一目标,政策制定者必须着力构建有效的多边AI治理机制,包括建立并监督争端解决机制。同时,中等国家凭借各自独特的优势,通过非常规结盟也可以形成新的谈判筹码。

例如,能源资源丰富的沙特阿拉伯正在努力跻身全球第三大AI市场;法国和以色列的领先企业则誓言主导专业化AI应用领域;而印度凭借庞大的人口以及对教育的日益重视,正在逐步成为工程与计算机科学人才的主要输出国之一。

国际秩序正在走向多极化,AI领域亦不例外。与其不惜一切代价试图在所谓的“AI竞赛”中击败对手,中国和美国更应搭建桥梁,在朋友与对手之间寻求共识。

本文作者鲍里斯·巴比奇现任香港大学数据科学、哲学与法学副教授;黃裕舜为香港大学哲学助理教授及当代中国与世界研究中心研究员。

本文改编自作者即将于2026年出版的新书《人工智能的地缘政治》(Geopolitics of Artificial Intelligence),该书属于剑桥大学出版社(Cambridge University Press)的“Elements”系列丛书。

Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。(财富中文网)

译者:刘进龙

审校:汪皓

2025年12月9日,美国总统唐纳德·特朗普宣布,将允许英伟达(Nvidia)H200处理器对华出口,但所有销售额的25%必须上缴给美国政府。这一决定在美国政界引发震动,包括参议员伊丽莎白·沃伦在内的多位人士都指责特朗普“出卖”国家安全。

在全球AI领域,此类零和博弈或竞争性叙事屡见不鲜。例如,Anthropic一方面在国内反复强调AI安全的重要性,而其联合创始人兼首席执行官达里奥·阿莫代在国际上却不断强化“军备竞赛”的叙事,主张通过出口管制来减缓中国的发展速度,以确保美国赢得AI竞赛。《芯片战争》(Chip War)一书的作者克里斯·米勒也持有相似观点。他认为,美国的芯片出口管制措施,例如禁止向中国出售英伟达H100等最先进的GPU,已经“取得成功……显著放缓了中国芯片制造能力的增长”。特朗普本人也在去年7月宣称,美国率先开启了AI竞赛,并将赢得胜利。

这些论调暗示,两大强国正在进行一场双人对决:一方获胜,则另一方必败,赢家将以输家的损失为代价获得重大收益。然而,从理性选择的角度来看,“AI竞赛”这种说法其实并不恰当。双人对决通常具备以下特征:存在一种双方无法共享的竞争性资源,同时该资源又具有非排他性,即任何一方都难以阻止另一方使用。在这种情况下,市场参与者竞争的是“谁能率先获得该资源”。

在1955年的电影《无因的反叛》(Rebel Without a Cause)中,吉姆·斯塔克(詹姆斯·迪恩饰)与宿敌巴兹(科里·艾伦饰)驾车冲向悬崖。若两人都直行,则同归于尽;先转向者告负。如果一人转向、另一人继续冲向悬崖边缘,那么任何一方都无法通过改变策略来改善自身处境——这正是所谓的“纳什均衡”(Nash Equilibrium)。这种结果是非合作性的:如果一方转向,另一方应继续向前冲;但如果一方改为向前冲,另一方就应当转向。

然而,地缘政治语境下的AI生态并非如此。AI模型的使用具有排他性,例如去年萨姆·奥尔特曼决定禁止中国用户使用OpenAI的ChatGPT,但这种使用并不完全具有竞争性(例如,DeepSeek的模型以开源方式发布,任何人都可以在本地运行)。模型的具体部署在某种程度上具有竞争性,因为每增加一名边际用户都会带来能源和数据成本;但奥尔特曼的决定并非出于这方面的考虑。他之所以排除中国用户,是因为他认为美国不应与中国合作。

因此,或许有人主张,向中国出售芯片会助长中国的实力,从而使美国的处境更糟。但这种观点忽视了另一方面的好处,即美国普通中产家庭能以更低价格获取尖端电子产品;同时,全球对美国科技体系的依赖,也为美国提供了重要的战略杠杆。

一些经济学家将这种以非竞争性但具有排他性的资源为特征的情境,称为“猎鹿博弈”。这一概念源自哲学家让-雅克·卢梭在《论人类不平等的起源》(A Discourse on Inequality)中的一个寓言。设想有一群猎人,他们可以选择合作猎捕大型猎物(鹿),也可以单独猎捕小型猎物(兔子)。问题在于:只有合作才能捕到鹿;而每个人都能单独捕捉兔子。在这种博弈中存在两个纳什均衡:要么合作猎鹿,要么单独捕兔。但前者明显优于后者,所以他们应该合作猎鹿。

全球AI竞争与其说是一场竞赛,不如说更接近一场“猎鹿博弈”。无论是在政策、治理还是贸易层面,国家之间的合作所能带来的收益,往往高于各自为战。相反,一旦沟通破裂便会滋生猜疑,并可能引发有害的误判,例如因为高估对方带来的威胁而陷入不断升级的恶性循环,或在冲突中鲁莽地部署AI技术。由此可见,在中美AI博弈中的那只“鹿”,在很大程度上体现在双方共同防范此类失误,以及通过互利共赢的商业化发展,让AI造福更广泛的公众。

从AI带来的操纵、欺骗与胁迫风险,到其在劳动力市场应用所引发的就业替代问题,中国、美国以及世界各国面临着大量共同挑战。要实现互利合作,需要信任、透明与协作,而不是反复无常的政治化操作。唯有如此,才能从“各自捕兔”,走向“合力猎鹿”。

为实现这一目标,政策制定者必须着力构建有效的多边AI治理机制,包括建立并监督争端解决机制。同时,中等国家凭借各自独特的优势,通过非常规结盟也可以形成新的谈判筹码。

例如,能源资源丰富的沙特阿拉伯正在努力跻身全球第三大AI市场;法国和以色列的领先企业则誓言主导专业化AI应用领域;而印度凭借庞大的人口以及对教育的日益重视,正在逐步成为工程与计算机科学人才的主要输出国之一。

国际秩序正在走向多极化,AI领域亦不例外。与其不惜一切代价试图在所谓的“AI竞赛”中击败对手,中国和美国更应搭建桥梁,在朋友与对手之间寻求共识。

本文作者鲍里斯·巴比奇现任香港大学数据科学、哲学与法学副教授;黃裕舜为香港大学哲学助理教授及当代中国与世界研究中心研究员。

本文改编自作者即将于2026年出版的新书《人工智能的地缘政治》(Geopolitics of Artificial Intelligence),该书属于剑桥大学出版社(Cambridge University Press)的“Elements”系列丛书。

Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。(财富中文网)

译者:刘进龙

审校:汪皓

On Dec. 9th, U.S. President Donald Trump announced that the U.S. would allow Nvidia’s H200 processors to be exported to China, subject to a 25% fee on all sales. The move has sent ripples through the American establishment, with many (including Senator Elizabeth Warren) charging that Trump is “selling out” national security.

There is no shortage of such zero-sum or competitive framing when it comes to the global AI space. Indeed, while Anthropic has emphasized AI safety at home, the company’s co-founder and CEO, Dario Amodei, has stoked a narrative of an arms race abroad, arguing that export controls are essential to slow down China’s development and ensure that the U.S. wins the AI race. Similarly, Chip War author Chris Miller argues that the U.S. chip export controls, such as the prohibition on the sale to China of the most advanced GPUs like the NVIDIA H100s, have “succeeded … [by] significantly slow[ing] the growth of China’s chipmaking capability”. Indeed, Trump himself declared in July that America started the AI race, and it will win it.

Such arguments suggest that the two great powers are engaged in a two-player race—that one of them will win and the other will lose—and that the winner will obtain significant benefits at the expense of the loser. Yet from a rational choice perspective, the “AI race” is a misnomer. A two-party race typically involves an environment characterized by a rivalrous resource (which cannot be enjoyed by both parties) that is non-excludable (neither player can easily prevent the other from using it), and the players compete over who will be the first to that resource.

In the 1955 film, Rebel Without a Cause, Jim Stark (James Dean) races toward a cliff against his nemesis Buzz (Corey Allen). If both teenagers drive straight, they both die. The one who swerves first loses. If one driver swerves and the other continues racing to the cliff’s edge, neither can improve his position by changing strategy—we call this a Nash Equilibrium. This outcome is non-cooperative: If one swerves, the other should race; but if one switches to racing, the other should swerve.

The geopolitical AI ecosystem is not like this. The use of AI models is excludable—indeed, last year Sam Altman decided to exclude Chinese users from OpenAI’s GPT—but such use is not strictly rivalrous (DeepSeek’s models are released under open-source licenses and can be run locally by anyone). A model’s implementations are arguably rivalrous, in that the marginal user imposes an energy/data cost, but that was not the motivating concern for Altman’s decision: He excluded Chinese users because he believed that the U.S. should not cooperate with China.

So perhaps the argument is that selling chips to China would embolden Beijing and render the U.S. worse off. Yet this ignores the benefits accrued to ordinary U.S. middle-class households through greater access to leading electronics at lower prices, or the volume of leverage afforded through global dependence on the American tech landscape.

Some economists refer to a situation characterized by non-rivalrous but excludable resources, instead of rivalrous but non-excludable resources, as a “stag hunt”, drawing upon a parable in philosopher Jean-Jacques Rousseau’s A Discourse on Inequality. Consider a group of hunters who can choose to hunt a large prey together (the stag), or a small prey alone (the rabbit). The trick is that they can only catch the stag if they cooperate while everyone can hunt a rabbit on their own. This game has two Nash equilibria: Either we work together to hunt the stag, or we each work alone to catch a single rabbit. Yet one of these equilibria is better than the other: We should work together to hunt the stag.

Global AI competition looks more like a stag hunt than it does like a race. Whether in policy, governance, or trade, cooperation between countries can yield greater benefits than working alone. In contrast, a breakdown in communication breeds mistrust, which could give rise to harmful mistakes, such as an escalatory spiral from overestimating the threat posed by the other side, or a reckless deployment of AI in conflicts. The “stag” in the U.S.-China AI game, therefore, lies in part with the mutual prevention of such mistakes and the gains from mutually advantageous commercial development of AI for the benefit of the wider public.

There exist plenty of common challenges that China, the U.S., and the world must confront, from AI manipulation, deception, and coercion, to the displacement of labor brought about by AI’s implementation in the workforce. Such mutually beneficial cooperation requires trust, transparency, and cooperation, as opposed to erratic politicization—this is how we move from hunting the rabbit, to hunting the stag.

To get there, policymakers must seek to cultivate effective multilateral AI governance institutions, including establishing and monitoring dispute resolution mechanisms. Bargaining capital also arises through unconventional alignments of medium-size powers, each with their distinctive niches.

For instance, energy-rich Saudi Arabia is striving to become the third largest AI market in the world, while leading players in France and Israel are pledging to lead in specialized AI applications. With its immense population and growing emphasis upon education, India is shaping to be among the primary suppliers of engineering and computer science talent.

The international order is becoming more multi-polar, and the AI world is no exception. Instead of trying to “win the AI race” at any cost against its rival, both the U.S. and China should build bridges and seek common ground with friends and rivals alike.

Boris Babic is an associate professor of data science, philosophy and law at the University of Hong Kong. Brian Wong is an assistant professor of philosophy and a fellow at the Centre on Contemporary China and the World at the University of Hong Kong.

This essay is adapted from the authors’ forthcoming book, Geopolitics of Artificial Intelligence, to be published in 2026 by Cambridge University Press as part of its Elements series.

The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开