首页 500强 活动 榜单 商业 科技 商潮 专题 品牌中心
杂志订阅

2026年人工智能领域可能出现的关键趋势

Sridhar Ramaswamy
2026-01-02

2026年将成为企业突破人工智能初级应用场景的关键之年。

文本设置
小号
默认
大号
Plus(0条)

斯里德哈·拉马斯瓦米是人工智能数据云公司Snowflake的首席执行官。图片来源:courtesy of Snowflake

过去一年间,人工智能已开始切实重塑工作模式:编程助手加速软件开发进程,聊天机器人处理常规客户咨询。2026年将成为企业突破这些初级应用场景的关键之年,企业将在核心业务环节部署具备自主推理、规划与执行能力的人工智能系统。

在人工智能模型构建与部署方式变革的推动下,这一发展新阶段有望带来跨越式效益增长。以下预测将勾勒出2026年行业格局的演变图景,从各类竞争模型的广泛普及,到人工智能可靠性评估新标准的出台,同时也将揭示成功企业如何凭借差异化策略把握变革机遇。

1.科技巨头人工智能模型主导地位松动

多年来,业界普遍认为仅有少数科技巨头具备打造竞争性人工智能模型的雄厚财力。这一局面将在2026年被打破。深度求索(DeepSeek)等企业开创的全新训练方法证明,打造规模最为庞大、成本最为高昂的模型并非实现卓越性能的唯一路径。如今,企业正以开源基础模型为基石,结合自有数据进行定制化开发,开辟出一条更快捷、更经济的竞争性人工智能技术发展路径。这种民主化趋势意味着将有更多企业自主创建定制化模型,而无需完全依赖OpenAI、谷歌或Anthropic。

2.人工智能将迎来“HTTP时刻”:智能体协作新协议即将问世

正如超文本传输协议(HTTP)实现了各类网站在互联网的自由互联,2026年也将见证主流人工智能协议的诞生,该协议支持不同系统与平台的智能体协同工作。这一标准化进程将打破供应商绑定的桎梏,使不同服务商开发的专业智能体实现沟通协作,进而释放代理式人工智能的真正潜力。届时,各类企业能够构建互联互通的人工智能生态系统,摆脱单一供应商的孤立应用模式。专有人工智能封闭生态时代即将终结。

3.抵制“AI垃圾”的团队将引领创意产业发展

2026年,两类人工智能应用主体之间的差距将愈发凸显:一类借助人工智能激发自身创造力,另一类则将其视为依赖工具。前者将利用人工智能拓展创意边界,加速想法落地;后者则会贪图捷径,批量炮制同质化严重的内容。这些内容看似随处可见,却无法真正引发客户共鸣。唯有采取前者策略——赋能员工进行战略性思考,利用人工智能增强而非取代自身创造力——的企业,才能占据主导地位。

4.顶尖人工智能产品将从每次用户交互中学习

2026年,最成功的人工智能产品将具备从用户行为中持续学习的能力。正如谷歌搜索算法会通过分析用户的实际点击行为实现自我优化一样,那些能够捕捉反馈循环的人工智能系统——例如当前编程助手会根据用户对建议的采纳或拒绝调整自身表现——其迭代速度将远超静态模型。将这些反馈循环嵌入产品,可解锁更多复杂应用场景。掌握这种持续学习能力的企业,将获得复合式增长优势。

5.企业将要求AI智能体先完成可靠性量化评估,再推进规模化部署

对企业核心业务至关重要的人工智能应用,需要的是高精准度、可量化评估的准确结果,而非基于概率的不确定结论。消费级人工智能产品偶有失误尚可接受,但企业级系统在回答“昨日营收额是多少”这类问题时,必须给出精确答案。2026年,企业在推进人工智能技术大规模部署前,将坚持采用系统化方法衡量智能体的准确率。这一需求将推动高精度评估框架快速迭代。制定特定领域的测试标准,将成为代理式人工智能从试点项目迈向核心业务运营的关键一步。

6.创意将成为人工智能发展的瓶颈,而非执行

随着AI智能体承担大量项目搭建与落地执行工作,企业发展的核心瓶颈将从执行能力转向创意质量。这一转变机遇与挑战并存:它能助力团队快速完成原型开发与方案部署,这类工作过去往往需要耗费数月之久;但成功的关键在于能否提出正确的问题、锚定精准的方向。2026年,当执行环节逐步演变为标准化流程后,战略性思维与前瞻性视野,将成为区分高绩效企业与普通企业的核心要素。

7.影子人工智能将自下而上推动企业级人工智能落地

2026年,员工自主选用免费人工智能工具仍是推动企业级人工智能普及的核心驱动力。员工不再等待信息技术部门审批官方认证工具,转而主动使用ChatGPT、Claude等消费级人工智能工具处理日常工作,这迫使企业加快制定正式政策并完善基础设施。明智的企业会将基层自发应用视为技术实用性的试金石,并围绕员工已验证的应用场景构建自身人工智能战略。企业级人工智能的未来,正由一线员工书写,而非依赖自上而下的指令。

人工智能领域的真正角逐,现已拉开帷幕

2026年的行业领跑者,将不再是那些拥有最多人工智能试点项目或最庞大技术预算的企业,而是那些将人工智能视为一项战略性学科的企业——它们搭建评估框架,通过验证准确率建立信任,并赋能员工高效运用这些系统。技术已然就绪,企业必须以负责任的态度推进人工智能的规模化落地。

斯里德哈·拉马斯瓦米(Sridhar Ramaswamy)是人工智能数据云公司Snowflake的首席执行官。

Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。(财富中文网)

译者:中慧言-王芳

过去一年间,人工智能已开始切实重塑工作模式:编程助手加速软件开发进程,聊天机器人处理常规客户咨询。2026年将成为企业突破这些初级应用场景的关键之年,企业将在核心业务环节部署具备自主推理、规划与执行能力的人工智能系统。

在人工智能模型构建与部署方式变革的推动下,这一发展新阶段有望带来跨越式效益增长。以下预测将勾勒出2026年行业格局的演变图景,从各类竞争模型的广泛普及,到人工智能可靠性评估新标准的出台,同时也将揭示成功企业如何凭借差异化策略把握变革机遇。

1.科技巨头人工智能模型主导地位松动

多年来,业界普遍认为仅有少数科技巨头具备打造竞争性人工智能模型的雄厚财力。这一局面将在2026年被打破。深度求索(DeepSeek)等企业开创的全新训练方法证明,打造规模最为庞大、成本最为高昂的模型并非实现卓越性能的唯一路径。如今,企业正以开源基础模型为基石,结合自有数据进行定制化开发,开辟出一条更快捷、更经济的竞争性人工智能技术发展路径。这种民主化趋势意味着将有更多企业自主创建定制化模型,而无需完全依赖OpenAI、谷歌或Anthropic。

2.人工智能将迎来“HTTP时刻”:智能体协作新协议即将问世

正如超文本传输协议(HTTP)实现了各类网站在互联网的自由互联,2026年也将见证主流人工智能协议的诞生,该协议支持不同系统与平台的智能体协同工作。这一标准化进程将打破供应商绑定的桎梏,使不同服务商开发的专业智能体实现沟通协作,进而释放代理式人工智能的真正潜力。届时,各类企业能够构建互联互通的人工智能生态系统,摆脱单一供应商的孤立应用模式。专有人工智能封闭生态时代即将终结。

3.抵制“AI垃圾”的团队将引领创意产业发展

2026年,两类人工智能应用主体之间的差距将愈发凸显:一类借助人工智能激发自身创造力,另一类则将其视为依赖工具。前者将利用人工智能拓展创意边界,加速想法落地;后者则会贪图捷径,批量炮制同质化严重的内容。这些内容看似随处可见,却无法真正引发客户共鸣。唯有采取前者策略——赋能员工进行战略性思考,利用人工智能增强而非取代自身创造力——的企业,才能占据主导地位。

4.顶尖人工智能产品将从每次用户交互中学习

2026年,最成功的人工智能产品将具备从用户行为中持续学习的能力。正如谷歌搜索算法会通过分析用户的实际点击行为实现自我优化一样,那些能够捕捉反馈循环的人工智能系统——例如当前编程助手会根据用户对建议的采纳或拒绝调整自身表现——其迭代速度将远超静态模型。将这些反馈循环嵌入产品,可解锁更多复杂应用场景。掌握这种持续学习能力的企业,将获得复合式增长优势。

5.企业将要求AI智能体先完成可靠性量化评估,再推进规模化部署

对企业核心业务至关重要的人工智能应用,需要的是高精准度、可量化评估的准确结果,而非基于概率的不确定结论。消费级人工智能产品偶有失误尚可接受,但企业级系统在回答“昨日营收额是多少”这类问题时,必须给出精确答案。2026年,企业在推进人工智能技术大规模部署前,将坚持采用系统化方法衡量智能体的准确率。这一需求将推动高精度评估框架快速迭代。制定特定领域的测试标准,将成为代理式人工智能从试点项目迈向核心业务运营的关键一步。

6.创意将成为人工智能发展的瓶颈,而非执行

随着AI智能体承担大量项目搭建与落地执行工作,企业发展的核心瓶颈将从执行能力转向创意质量。这一转变机遇与挑战并存:它能助力团队快速完成原型开发与方案部署,这类工作过去往往需要耗费数月之久;但成功的关键在于能否提出正确的问题、锚定精准的方向。2026年,当执行环节逐步演变为标准化流程后,战略性思维与前瞻性视野,将成为区分高绩效企业与普通企业的核心要素。

7.影子人工智能将自下而上推动企业级人工智能落地

2026年,员工自主选用免费人工智能工具仍是推动企业级人工智能普及的核心驱动力。员工不再等待信息技术部门审批官方认证工具,转而主动使用ChatGPT、Claude等消费级人工智能工具处理日常工作,这迫使企业加快制定正式政策并完善基础设施。明智的企业会将基层自发应用视为技术实用性的试金石,并围绕员工已验证的应用场景构建自身人工智能战略。企业级人工智能的未来,正由一线员工书写,而非依赖自上而下的指令。

人工智能领域的真正角逐,现已拉开帷幕

2026年的行业领跑者,将不再是那些拥有最多人工智能试点项目或最庞大技术预算的企业,而是那些将人工智能视为一项战略性学科的企业——它们搭建评估框架,通过验证准确率建立信任,并赋能员工高效运用这些系统。技术已然就绪,企业必须以负责任的态度推进人工智能的规模化落地。

斯里德哈·拉马斯瓦米(Sridhar Ramaswamy)是人工智能数据云公司Snowflake的首席执行官。

Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。(财富中文网)

译者:中慧言-王芳

Over the past year, AI has begun reshaping work in tangible ways, with coding assistants that speed software development and chatbots that handle routine customer inquiries. But 2026 will be the year organizations move beyond these initial use cases to deploy systems that can reason, plan, and act autonomously across core operations.

This next stage has the potential to deliver dramatic gains, driven by shifts already underway in how AI models are built and deployed. The following predictions outline how the landscape will evolve in 2026 — from wider access to competitive models to new standards for measuring AI reliability — and how successful organizations will differentiate themselves to capitalize on these changes.

1 – Big Tech’s Grip on AI Models Will Loosen

For years, conventional wisdom held that only a handful of tech giants could afford to build competitive AI models. In 2026, that will change. New approaches to training like those developed by DeepSeek have shown that building the biggest, most expensive models isn’t the only path to strong performance. Companies are now taking open-source foundation models and customizing them with their own data, creating a faster, cheaper route to competitive AI. This democratization means far more organizations will create their own tailored models instead of relying solely on OpenAI, Google, or Anthropic.

2 – AI Will Have Its ‘HTTP’ Moment With a New Protocol for Agent Collaboration

Much as HTTP allows websites to connect freely across the internet, a dominant AI protocol will emerge next year that will allow agents to work together across different systems and platforms. This move towards standardization will unlock the true potential of agentic AI by allowing specialized agents from different providers to communicate and collaborate without vendor lock-in. Organizations will finally be able to build interconnected AI ecosystems rather than siloed applications tied to single providers. The age of the proprietary AI walled garden is ending.

3 – Teams That Resist ‘AI Slop’ Will Dominate the Creative Landscape

In 2026, a divide will emerge between those who use AI to amplify their own creativity and those who use it as a crutch. One group will leverage AI to expand their creativity and push their own ideas further and faster. The other will take the easy route, churning out generic content that floods the market but doesn’t resonate with customers. Organizations that take the former approach — empowering people to think strategically and use AI to enhance, rather than replace, their own creativity — will dominate their industries.

4 – The Best AI Products Will Learn From Every User Interaction

In 2026, the most successful AI products will build in continuous learning from user behavior. Much as Google’s search algorithm improved itself by learning which websites users actually clicked on, AI systems that capture feedback loops — like coding copilots do now when users accept or reject suggestions — will improve far faster than static models. Embedding these feedback loops into products will make increasingly complex use cases possible. Companies that take advantage of this continuous learning will gain compounding advantages.

5 – Enterprises Will Demand Quantified Reliability Before Scaling AI Agents

Business-critical AI applications require precise, measurable accuracy, not probabilistic answers. While consumer AI can afford to occasionally get things wrong, enterprise systems need exact answers to questions like “How much revenue did we generate yesterday?” In 2026, organizations will insist on systematic methods to measure the accuracy of agents before deploying them at scale, which will drive rapid innovation in sophisticated evaluation frameworks. Establishing these domain-specific testing standards will be essential for taking agentic AI from pilot projects to core business operations.

6 – Ideas, Not Execution, Will Become the AI Bottleneck

As AI agents handle more of the actual work of building and implementing projects, organizations will be limited by the quality of their ideas more than their ability to execute on them. This shift will be both liberating and daunting. It allows teams to rapidly prototype and deploy solutions that once took months, but success depends on asking the right questions and setting the right direction. In 2026, as execution becomes commoditized, strategic thinking and vision will separate high-performing organizations from the rest.

7 – Shadow AI Will Drive Enterprise Adoption from the Bottom Up

Employees who select their own free AI tools will remain the primary driver of enterprise AI adoption in 2026. Rather than waiting for IT departments to sanction approved products, workers are using ChatGPT, Claude, and other consumer AI tools for their daily work, forcing organizations to catch up with formal policies and infrastructure. Smart enterprises will recognize this grassroots adoption as a signal of what works and build their AI strategies around employee-proven use cases. The future of enterprise AI is being written by individual contributors, not by mandates from the top.

The Real AI Race Starts Now

The organizations that lead in 2026 won’t be those with the most AI pilots or the biggest technology budgets. They’ll be the ones that treat AI as a strategic discipline — building evaluation frameworks, establishing trust through verified accuracy, and empowering employees to use these systems effectively. The technology is ready. Enterprises must now deploy it responsibly at scale.

Sridhar Ramaswamy is CEO of Snowflake, the AI Data Cloud company.

The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开