
过去二十年以来,我坚持参加铁人三项比赛。这种比赛残酷而漫长,需在一天内完成超过140英里的征程。而我在高成长型企业的领导之路上走的路更长,先后任职于谷歌(Google)、Dropbox以及如今的Freshworks。
可以说,我的整个成年人生涯都在追求“速度”。而这些经历带给我最大的启示是:在AI竞赛中,大多数企业对节奏的把握是完全错误的。
贝恩公司(Bain & Company)的最新数据显示,美国95%的企业正在以某种形式应用生成式AI,但只有5%的企业真正从AI投资中获得实质回报。
我认为,这一现象的根源在于,许多企业高管就像铁人三项的新手,把AI竞赛当作短跑,拼命追逐速度、热度和短期成果,却期望能够获得长期且可持续的收益。无论是在竞技场上还是在商业竞争中,成功的关键都在于掌握节奏、积蓄耐力,并始终聚焦长远目标。
AI时代的“铁人三项”法则
透过18场铁人三项比赛,我深刻体会到,真正关键的地方并非力量或速度,而是体系架构。无论是备战比赛,还是带领一家企业完成AI转型,你都需要一套原则,让自己在不确定甚至令人疲惫的时期保持稳健与自律。我始终秉持以下三条原则:
1. 发挥自身优势
2. 化繁为简,以实现规模化
3. 保持一致胜过混乱无序
作为首席执行官,正是这三条原则指引着我,在“软件即服务”(SaaS)行业数十年来最具颠覆性的变革中,推动企业建设,实现规模化扩张,并引领成功转型。
发挥自身优势
在最初参加的几场铁人三项比赛中,我试图在游泳阶段紧跟经验丰富的选手。事实证明,这是重大失误。我过早消耗太多体力,结果后程付出了代价。后来我领悟到,无论在赛场上还是商业竞争中,表现出色并不意味着要与他人的速度看齐,而在于认清自身优势,合理掌控节奏,并坚定执行自己的战略规划。
同样的道理也适用于制定AI战略。每家公司都想效仿谷歌或OpenAI的成功模式,但并非每家公司都适合这样做,而这未尝不是好事。尽管我非常钦佩谷歌的前同事,但我们并不打算照搬他们的做法。我们的赛道不同,所处环境、拥有的资源与设立的目标也截然不同。
在AI竞赛中,真正的领先者是那些深知自身定位和短板的企业。并非所有组织都需要成为AI研究实验室,从零开始研发新模型和基础设施。最优秀的领导者会利用AI强化自身优势,如优化客户体验、精简运营、提升效率等,同时始终坚守令客户青睐的核心价值。
我们的一个客户是一家以卓越服务著称的旅游巴士公司,他们也曾面临类似的抉择:如何在追求增长的同时,保持其广受认可的个性化服务优势。通过引入AI处理日常事务,公司让客服人员有更多时间承担销售角色。于是,客服中心从成本中心转变为利润中心。如今,该部门创造的收入已超过其总运营成本。
化繁为简,实现规模化
“化繁为简”是一个极具力量的词。对我而言,它意味着拒绝复杂性。无论是在比赛还是在企业管理中,复杂性常常披着“准备”的外衣悄然出现——这里添一件新装备,那里尝试一个新想法——直到最后我们才发现,其实是自己让事情变得更难推进。无论在董事会决策还是在赛道上,我对此都有切身体会。
在铁人三项中,尤其是在自行车环节,人们极容易把准备工作过度复杂化。某一年,为了提升速度,我决定把轮胎内胎换成更高科技的新型号。但在首次训练试骑时,就有一条内胎爆裂,导致爆胎。这次经历让我明白,再“先进”的工具也不能保证成功,事实上,它们往往会拖慢我们的节奏。
我们在AI投资中也目睹了同样的错误。许多管理者被大牌软件的豪言壮语所吸引,换来的却是漫长的部署周期、复杂的学习门槛,以及与实际工作方式脱节的功能。软件复杂性在企业内部不断累积,造成系统割裂、团队各自为政,本应助力成功的工具反而拖累了效率,导致员工士气低落。
若想真正借助AI实现规模化增长,管理者必须学会做“减法”。这意味着选择适合企业的平台,带着清晰的目标谨慎引入工具,并在投入技术的同时重视人才培养,让团队能够自信地运用AI。唯有通过这种“化繁为简”的方式,企业才能明确经营战略,提高执行速度,并为持续增长奠定基础。
保持一致胜过混乱无序
如果说“化繁为简”着眼于战略设计的清晰度,那么“一致性”强调的则是执行上的自律。
在训练中,我常常有想“赖床”、而不是立刻起床去游泳或出门长跑的冲动。但无论是在耐力运动还是在AI竞赛中,成功都源于日复一日付出不懈努力与保持专注。
这种心态对于希望从AI投资中获得回报的企业领导者而言尤为重要。在几乎每天都有新AI公司涌现的时代,人们很容易分散注意力。而保持一致意味着要坚守方向:一旦确定了与企业战略契合的平台和应用场景,就要坚定执行,设定清晰目标,将AI融入日常工作流程。持续衡量,不断优化,反复实践。过程虽然漫长,但最终必能获得回报。
一年多前,我们的销售团队发现,潜在客户开发是日常工作中最大的瓶颈。在引入AI之前,从锁定目标客户、研究联系人到撰写个性化邮件,近四分之三的流程都依赖人工,既耗时又低效。团队希望减少在事务性工作上耗费的时间,把更多精力放在与客户的直接沟通上。通过引入自动化工具并持续优化,团队在短短三个月内便实现了十倍的投资回报。
人们常常把徒劳的行动,误认为是实际进展。但真正赢在长远的公司,往往专注于结果,使团队围绕共同的优先目标协同行动,并在他人追逐下一个风口时保持定力。就像铁人三项训练一样,真正的突破从来不是一次性爆发的结果,而是上百次不懈努力的累积。
AI的长期赛道
与铁人三项不同,AI竞赛没有终点线,它的赛程漫长,变化莫测。它也没有现成的路线图,唯有一条准则:发挥自身优势,化繁为简,并日复一日坚持不懈。
那些懂得拥抱这种不确定性的领导者,最终会带领他们的企业变得更高效、更具创新力,也更具韧性。从明天起,不妨先选定一个流程、一支团队或一次客户互动,借助AI化繁为简,由此开启转型之路。
真正的进步源于提出正确的问题,持之以恒地努力,以及在赛程不断变化时,依然保持学习的耐心与勇气。
无论是在赛场上还是在商界中,成功都属于那些坚守自己节奏的人。唯有如此,才能在时间的长河中积蓄耐力,赢得长远胜利。(财富中文网)
本文作者丹尼斯·伍德赛德现任Freshworks公司总裁兼首席执行官。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。
译者:刘进龙
审校:汪皓
过去二十年以来,我坚持参加铁人三项比赛。这种比赛残酷而漫长,需在一天内完成超过140英里的征程。而我在高成长型企业的领导之路上走的路更长,先后任职于谷歌(Google)、Dropbox以及如今的Freshworks。
可以说,我的整个成年人生涯都在追求“速度”。而这些经历带给我最大的启示是:在AI竞赛中,大多数企业对节奏的把握是完全错误的。
贝恩公司(Bain & Company)的最新数据显示,美国95%的企业正在以某种形式应用生成式AI,但只有5%的企业真正从AI投资中获得实质回报。
我认为,这一现象的根源在于,许多企业高管就像铁人三项的新手,把AI竞赛当作短跑,拼命追逐速度、热度和短期成果,却期望能够获得长期且可持续的收益。无论是在竞技场上还是在商业竞争中,成功的关键都在于掌握节奏、积蓄耐力,并始终聚焦长远目标。
AI时代的“铁人三项”法则
透过18场铁人三项比赛,我深刻体会到,真正关键的地方并非力量或速度,而是体系架构。无论是备战比赛,还是带领一家企业完成AI转型,你都需要一套原则,让自己在不确定甚至令人疲惫的时期保持稳健与自律。我始终秉持以下三条原则:
1. 发挥自身优势
2. 化繁为简,以实现规模化
3. 保持一致胜过混乱无序
作为首席执行官,正是这三条原则指引着我,在“软件即服务”(SaaS)行业数十年来最具颠覆性的变革中,推动企业建设,实现规模化扩张,并引领成功转型。
发挥自身优势
在最初参加的几场铁人三项比赛中,我试图在游泳阶段紧跟经验丰富的选手。事实证明,这是重大失误。我过早消耗太多体力,结果后程付出了代价。后来我领悟到,无论在赛场上还是商业竞争中,表现出色并不意味着要与他人的速度看齐,而在于认清自身优势,合理掌控节奏,并坚定执行自己的战略规划。
同样的道理也适用于制定AI战略。每家公司都想效仿谷歌或OpenAI的成功模式,但并非每家公司都适合这样做,而这未尝不是好事。尽管我非常钦佩谷歌的前同事,但我们并不打算照搬他们的做法。我们的赛道不同,所处环境、拥有的资源与设立的目标也截然不同。
在AI竞赛中,真正的领先者是那些深知自身定位和短板的企业。并非所有组织都需要成为AI研究实验室,从零开始研发新模型和基础设施。最优秀的领导者会利用AI强化自身优势,如优化客户体验、精简运营、提升效率等,同时始终坚守令客户青睐的核心价值。
我们的一个客户是一家以卓越服务著称的旅游巴士公司,他们也曾面临类似的抉择:如何在追求增长的同时,保持其广受认可的个性化服务优势。通过引入AI处理日常事务,公司让客服人员有更多时间承担销售角色。于是,客服中心从成本中心转变为利润中心。如今,该部门创造的收入已超过其总运营成本。
化繁为简,实现规模化
“化繁为简”是一个极具力量的词。对我而言,它意味着拒绝复杂性。无论是在比赛还是在企业管理中,复杂性常常披着“准备”的外衣悄然出现——这里添一件新装备,那里尝试一个新想法——直到最后我们才发现,其实是自己让事情变得更难推进。无论在董事会决策还是在赛道上,我对此都有切身体会。
在铁人三项中,尤其是在自行车环节,人们极容易把准备工作过度复杂化。某一年,为了提升速度,我决定把轮胎内胎换成更高科技的新型号。但在首次训练试骑时,就有一条内胎爆裂,导致爆胎。这次经历让我明白,再“先进”的工具也不能保证成功,事实上,它们往往会拖慢我们的节奏。
我们在AI投资中也目睹了同样的错误。许多管理者被大牌软件的豪言壮语所吸引,换来的却是漫长的部署周期、复杂的学习门槛,以及与实际工作方式脱节的功能。软件复杂性在企业内部不断累积,造成系统割裂、团队各自为政,本应助力成功的工具反而拖累了效率,导致员工士气低落。
若想真正借助AI实现规模化增长,管理者必须学会做“减法”。这意味着选择适合企业的平台,带着清晰的目标谨慎引入工具,并在投入技术的同时重视人才培养,让团队能够自信地运用AI。唯有通过这种“化繁为简”的方式,企业才能明确经营战略,提高执行速度,并为持续增长奠定基础。
保持一致胜过混乱无序
如果说“化繁为简”着眼于战略设计的清晰度,那么“一致性”强调的则是执行上的自律。
在训练中,我常常有想“赖床”、而不是立刻起床去游泳或出门长跑的冲动。但无论是在耐力运动还是在AI竞赛中,成功都源于日复一日付出不懈努力与保持专注。
这种心态对于希望从AI投资中获得回报的企业领导者而言尤为重要。在几乎每天都有新AI公司涌现的时代,人们很容易分散注意力。而保持一致意味着要坚守方向:一旦确定了与企业战略契合的平台和应用场景,就要坚定执行,设定清晰目标,将AI融入日常工作流程。持续衡量,不断优化,反复实践。过程虽然漫长,但最终必能获得回报。
一年多前,我们的销售团队发现,潜在客户开发是日常工作中最大的瓶颈。在引入AI之前,从锁定目标客户、研究联系人到撰写个性化邮件,近四分之三的流程都依赖人工,既耗时又低效。团队希望减少在事务性工作上耗费的时间,把更多精力放在与客户的直接沟通上。通过引入自动化工具并持续优化,团队在短短三个月内便实现了十倍的投资回报。
人们常常把徒劳的行动,误认为是实际进展。但真正赢在长远的公司,往往专注于结果,使团队围绕共同的优先目标协同行动,并在他人追逐下一个风口时保持定力。就像铁人三项训练一样,真正的突破从来不是一次性爆发的结果,而是上百次不懈努力的累积。
AI的长期赛道
与铁人三项不同,AI竞赛没有终点线,它的赛程漫长,变化莫测。它也没有现成的路线图,唯有一条准则:发挥自身优势,化繁为简,并日复一日坚持不懈。
那些懂得拥抱这种不确定性的领导者,最终会带领他们的企业变得更高效、更具创新力,也更具韧性。从明天起,不妨先选定一个流程、一支团队或一次客户互动,借助AI化繁为简,由此开启转型之路。
真正的进步源于提出正确的问题,持之以恒地努力,以及在赛程不断变化时,依然保持学习的耐心与勇气。
无论是在赛场上还是在商界中,成功都属于那些坚守自己节奏的人。唯有如此,才能在时间的长河中积蓄耐力,赢得长远胜利。(财富中文网)
本文作者丹尼斯·伍德赛德现任Freshworks公司总裁兼首席执行官。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。
译者:刘进龙
审校:汪皓
I’ve spent two decades competing in Ironman Triathlons, grueling, single-day events that total over 140 miles. I’ve spent even longer leading high-growth companies, from Google and Dropbox to Freshworks.
You could say that I’ve been operating with a need for speed my entire adult life. And if there’s one thing these experiences have taught me, it’s that most companies are pacing the AI race all wrong.
Recent data from Bain & Company shows that 95% of U.S. companies are using generative AI in some form, yet only 5% of firms see meaningful value from their AI investments.
I believe this is happening because, like rookie triathletes, many business leaders treat AI like a sprint – chasing speed, hype, and short-term wins, while expecting long-term, sustainable results. In both racing and business, success hinges on pacing yourself, building stamina, and staying focused on the long game.
The Ironman playbook for AI
Over my 18 Ironmans, I’ve learned that the real key isn’t strength or speed – it’s structure. Whether training for race day or leading a company through AI transformation, you need a set of principles to keep you grounded and disciplined through uncertain (and sometimes fatiguing) times. The three I stand by are:
1. Play to your strengths
2. Uncomplicate to scale
3. Consistency over chaos
As a CEO, these principles have guided me in building, scaling, and leading through one of the most disruptive shifts the SaaS industry has seen in decades.
Play to your strengths
In my first few Ironman races, I tried to keep up with the veterans in the swim. Big mistake. I burned too much too soon and paid for it the rest of the way. Eventually, I learned that performance – in racing or business – isn’t about matching someone else’s speed. It’s about knowing your strengths, then pacing with purpose and trusting your own race plan.
The same lesson applies in setting an AI strategy. Every company wants to mimic the playbooks of the Googles or OpenAIs of the world. But not every company should — and that’s not a bad thing. As much as I admire my former colleagues at Google, we’re not trying to emulate them. Our race is different. Our landscape, resources, and goals aren’t the same.
The leaders of the AI race are the ones who know who they are and who they are not. Not every organization needs to become an AI research lab, developing new models and infrastructure from scratch. The best leaders will use AI to amplify their business’s strengths, such as improving customer experiences, streamlining operations, and driving efficiency, without losing focus on what makes them beloved by customers.
One of our customers, a tour bus operator known for exceptional customer service, faced a similar crossroads – how to grow without sacrificing the personal touch that they were known for. By introducing AI to handle routine tasks, the company freed up service agents to take on sales roles, shifting their service center from a cost center into a profit center. Revenue from the service team now exceeds its total running costs.
Uncomplicate to scale
“Uncomplicate” is a powerful word. For me, it means rejecting complexity. In racing and leadership, it often sneaks in disguised as preparation — a new tool here, a new idea there — until we realize we’re making things much harder for ourselves. I’ve learned that firsthand, both in the boardroom and on the bike.
It’s easy to overcomplicate triathlon logistics, especially when it comes to the bike. One year, I decided to upgrade to higher-tech inner tubes for my tires to increase my speed. But the first time I tested the new tubes during a training ride, one blew out, resulting in a flat tire. It was a humbling reminder that the shiniest tools don’t guarantee success. In fact, they often slow us down.
I’ve seen the same mistake in AI investment. Leaders go for the big-name software with bold promises, only to face long implementations, steep learning curves, and features that don’t match how teams actually work. Inside organizations, that software complexity compounds into fragmented systems, siloed teams, and deflated morale from tools that slow them down instead of helping them succeed.
To truly scale with AI, leaders must remove complexity. This means choosing platforms that fit the organization, adopting tools thoughtfully with clear goals, and investing in people as much as technology so teams can use AI confidently. This approach to uncomplication makes space for clarity, speed, and growth.
Consistency over chaos
While uncomplicating is about clarity of design, consistency is about discipline of execution.
When I’m training, there are plenty of mornings when snoozing my alarm sounds much more appealing than jumping in the pool or getting out for a long run. But success in endurance sports – and this AI race – comes from showing up every day with relentless effort and focus.
That same mindset is especially important for leaders seeking ROI from their AI investments. In a time where there’s a new AI company on the block almost every day, it’s easy to get distracted. Consistency means staying the course. Once you identify the right platforms and use cases that align with your strategy, commit to them. Set clear goals and integrate AI into daily workflows. Measure, refine, and repeat. It takes time, but the results will come.
Over a year ago, our sales team identified prospecting as the biggest bottleneck in its daily workflows. Before AI, nearly three-quarters of the process – from identifying target companies to researching contacts and writing personalized emails – was manual and time-consuming. The team wanted to spend less time on busywork and more time connecting directly with customers. By introducing automation and fine tuning over time, the team achieved 10x ROI in just three months.
It’s easy to confuse motion for momentum. But the companies that actually win the long game will focus on outcomes, align teams around shared priorities, and hold steady when everyone else chases the next big thing. Just like in Ironman training, progress doesn’t come from one heroic effort, but from a hundred consistent ones.
The long game of AI
Unlike an Ironman, AI doesn’t have a finish line. The AI race is long, unpredictable, and constantly changing. There really isn’t a roadmap – only the discipline to play to your strengths, uncomplicate your path, and keep showing up every day.
The leaders who learn to embrace this uncertainty will be the ones who make their organizations faster, more innovative, and more resilient. Tomorrow, pick one process, one team, or one customer interaction to uncomplicate with AI and start there.
Progress comes from asking the right questions, showing up consistently, and having the patience and courage to keep learning as the course evolves.
In both racing and business, success comes when you stay your own course. Over time, this is how you build endurance and win the long game.