
每当畅想AI具备类人能力的未来时,空客前首席技术官保罗·埃雷蒙科首先想到的始终都是利用AI打造真实的机器。他对《财富》杂志说:“我想要一个能为我们建造星际飞船和戴森球的超级人工智能体。”戴森球是科幻作品中假想的巨型结构,能够从恒星获取能量。
尽管这个梦想仍很遥远,但埃雷蒙科正在为此做基础铺垫工作。他与谷歌DeepMind前研究员亚历克萨·戈尔迪奇,以及空客创新中心Acubed前工程负责人亚当·内格尔共同创立了P-1 AI公司。该公司今日结束隐身模式,宣布获得由激进创投领投的2300万美元种子轮融资。
P-1得名于托马斯·约瑟夫·瑞安1977年的科幻小说《P-1的青春》(The Adolescence of P-1),后者讲述了一个有感情的人工智能体的故事。P-1正在开发名为Archie的AI工程代理。该理念与Cognition AI的AI编程工具Devin类似,旨在让Archie融入并成为每个工程团队的新成员,处理需求解释、初步设计概念生成以及法规合规性检查等重复性耗时任务。
埃雷蒙科表示,令他感到惊讶的是,目前还没有人从事该领域的研究工作,不过他很快明白了个中原因。与自动驾驶汽车和机器人一样,教导AI建造机器需要海量的训练数据。他解释说,关键在于通过建立电机、管道、轴等真实部件的虚拟模型,来模拟真实的工程系统。
戈尔迪奇指出,这一点跟谷歌DeepMind利用围棋训练AlphaGo差不多。AlphaGo是一个人工智能体,曾在围棋这个超级复杂的策略棋盘游戏中战胜了人类。他对《财富》杂志说:“AlphaGo最初通过模仿人类棋手数据进行训练。”如今,他将开始训练和精校大语言模型和其他AI系统,使其能在数据中心冷却或暖通系统等物理现象较为丰富的场景中理解和修改复杂工程设计。
他解释说,为超越ChatGPT这类大型语言模型所拥有的“高级自动补全”功能,模型必须适用于执行工程任务。因此,AI需真正理解并遵从指令。如果将基于物理模拟合成数据训练的AI模型与能理解执行该数据的AI模型相结合,那么就可以真正实现工程协助的自动化。
埃雷蒙科表示,P-1的投资者不仅关注公司务实的短期计划,同时对公司的远景尤为兴奋。他解释说:“工程和AI领域的很多从业者从小便开始接触科幻作品。这些科幻作品都曾提及,未来将出现能够建造星际飞船的超级人工智能体。”
Autodesk、西门子和IBM等巨头正在探索AI的工程应用,但它们既没有创造新型的通用工程AI助手,也没有去探究上述用AI制造机器的宏大愿景。
不过,埃雷蒙科和戈尔迪奇坚称,他们所走的这条路径非常现实,而且将专注地走下去,它并不是一个没有期限的纯研究类项目。埃雷蒙科说:“它不会成为那种长达十年、难以实现的项目,而是一个非常务实的执行和上市路径。”(财富中文网)
译者:冯丰
审校:夏林
每当畅想AI具备类人能力的未来时,空客前首席技术官保罗·埃雷蒙科首先想到的始终都是利用AI打造真实的机器。他对《财富》杂志说:“我想要一个能为我们建造星际飞船和戴森球的超级人工智能体。”戴森球是科幻作品中假想的巨型结构,能够从恒星获取能量。
尽管这个梦想仍很遥远,但埃雷蒙科正在为此做基础铺垫工作。他与谷歌DeepMind前研究员亚历克萨·戈尔迪奇,以及空客创新中心Acubed前工程负责人亚当·内格尔共同创立了P-1 AI公司。该公司今日结束隐身模式,宣布获得由激进创投领投的2300万美元种子轮融资。
P-1得名于托马斯·约瑟夫·瑞安1977年的科幻小说《P-1的青春》(The Adolescence of P-1),后者讲述了一个有感情的人工智能体的故事。P-1正在开发名为Archie的AI工程代理。该理念与Cognition AI的AI编程工具Devin类似,旨在让Archie融入并成为每个工程团队的新成员,处理需求解释、初步设计概念生成以及法规合规性检查等重复性耗时任务。
埃雷蒙科表示,令他感到惊讶的是,目前还没有人从事该领域的研究工作,不过他很快明白了个中原因。与自动驾驶汽车和机器人一样,教导AI建造机器需要海量的训练数据。他解释说,关键在于通过建立电机、管道、轴等真实部件的虚拟模型,来模拟真实的工程系统。
戈尔迪奇指出,这一点跟谷歌DeepMind利用围棋训练AlphaGo差不多。AlphaGo是一个人工智能体,曾在围棋这个超级复杂的策略棋盘游戏中战胜了人类。他对《财富》杂志说:“AlphaGo最初通过模仿人类棋手数据进行训练。”如今,他将开始训练和精校大语言模型和其他AI系统,使其能在数据中心冷却或暖通系统等物理现象较为丰富的场景中理解和修改复杂工程设计。
他解释说,为超越ChatGPT这类大型语言模型所拥有的“高级自动补全”功能,模型必须适用于执行工程任务。因此,AI需真正理解并遵从指令。如果将基于物理模拟合成数据训练的AI模型与能理解执行该数据的AI模型相结合,那么就可以真正实现工程协助的自动化。
埃雷蒙科表示,P-1的投资者不仅关注公司务实的短期计划,同时对公司的远景尤为兴奋。他解释说:“工程和AI领域的很多从业者从小便开始接触科幻作品。这些科幻作品都曾提及,未来将出现能够建造星际飞船的超级人工智能体。”
Autodesk、西门子和IBM等巨头正在探索AI的工程应用,但它们既没有创造新型的通用工程AI助手,也没有去探究上述用AI制造机器的宏大愿景。
不过,埃雷蒙科和戈尔迪奇坚称,他们所走的这条路径非常现实,而且将专注地走下去,它并不是一个没有期限的纯研究类项目。埃雷蒙科说:“它不会成为那种长达十年、难以实现的项目,而是一个非常务实的执行和上市路径。”(财富中文网)
译者:冯丰
审校:夏林
When dreaming of the day artificial intelligence achieves humanlike ability, former Airbus CTO Paul Eremenko says he’s always done so in the context of building real-world machines. “I want an AI superintelligence that can build us starships and Dyson spheres,” he told Fortune—the latter being a hypothetical sci-fi megastructure that would harness energy from a star.
While his dream is still a long way off, Eremenko is laying the groundwork. He has joined forces with former Google DeepMind researcher Aleksa Gordić and Adam Nagel, an engineering leader previously at Acubed, Airbus’s innovation center. Together, they have founded P-1 AI, which emerged from stealth today with a $23 million seed round led by Radical Ventures.
P-1, named after The Adolescence of P-1, a 1977 science fiction novel by Thomas Joseph Ryan about a sentient AI, is developing an AI-powered engineering agent called Archie. Similar to other AI agents like the AI-coding Devin from Cognition AI, the idea is to embed Archie as a junior member of every engineering team—to handle repetitive but time-sucking tasks like interpreting requirements, generating early design concepts, and checking compliance with regulations.
Eremenko said he was surprised that no one was already working on this goal, but he quickly figured out why. Just like with self-driving cars and robots, teaching AI to build machines requires a tremendous amount of training data. The key, he explained, is simulating realistic engineering systems by building virtual models of real-world components, like motors, pipes, and shafts.
According to Gordić, it’s similar to how Google DeepMind used games to help train AlphaGo, the AI that beat human champions at Go, a famously complex strategy board game. "AlphaGo was trained initially to mimic data from actual human players," he told Fortune. Now, he will be training and fine-tuning large language models (LLMs) and other AI systems to understand and modify complex engineering designs in physics-rich systems like data center cooling or HVAC systems.
To go beyond the "glorified auto-complete" capabilities of LLMs like ChatGPT, he explained, the models must be useful for engineering tasks. The AI, therefore, must actually understand commands and follow instructions. The powerful combination of AI models that are trained on synthetic data built on physics simulations and that can then understand and act on that data makes truly automated engineering assistance a reality.
P-1’s investors, said Eremenko, are interested in the startup’s more grounded short-term plans—but they are particularly excited about the future. "A lot of us in the engineering and AI world, we grew up on sci-fi, and the sci-fi promised us a superintelligence that’s going to build starships," he explained.
Large incumbents like Autodesk, Siemens, and IBM are working toward elements of using AI for engineering, but they are not creating a new class of generalist engineering AI assistants, nor are they going after the same grand vision of AI-built machines.
Yet Eremenko and Gordić insist theirs is a very realistic and focused path, and it’s not purely a research project with an indefinite time frame. "We’re not going to be a 10-year moonshot," Eremenko said. "This is a very pragmatic rollout and path to market."