
1966年的科幻电影《神奇旅程》(Fantastic Voyage)想象出一种科技,可以将人缩小到微观尺寸,然后乘坐一艘微型潜艇在人体内旅行,并修复一位受伤科学家大脑中的血栓。
总部位于巴黎的初创公司Robeauté日前宣布获得2,800万美元风险投资,该公司的目标是将这种科幻概念变为现实。当然,该公司的技术并非将人类缩小,而是开发出一种可在人脑中游走的自推进微型机器人,长度仅为1.8毫米,约相当于一粒大米的大小,可以协助神经外科医生进行手术。Robeauté将采集组织样本用于活体检查作为首个应用场景,但该公司希望其设计的机器人能够成为多用途载体,最终可以将癌症药物直接输送到无法手术和难治疗的脑肿瘤,或将电极植入大脑深处,用于治疗帕金森氏症或其他脑部疾病。
A轮融资由伦敦的Plural、Cherry Ventures和Kindred Ventures共同领投。其他参与融资的投资者包括LocalGlobe、Think.Health和之前的投资者APEX Ventures。总部位于慕尼黑的Brainlab以战略投资者的身份参与了融资。Brainlab开发协助手术和放射治疗的软件和医疗设备。
Robeauté计划利用这笔资金帮助其获得美国食品药品管理局(U.S. Food and Drug Administration)的批准,以开始其微型机器人的人体临床测试。该机器人已成功在活体动物中完成试验。该公司计划在2026年进行初步人体试验,并在美国开设办事处。
在可在人体内使用的微型甚至纳米级机器人领域,Robeauté并不是唯一一家进行创新的公司。硅谷初创公司Ediatx开发的Pillbot,是一种可以吞咽的小型机器人,可以将人体消化道内的图像和其他数据无线回传给医生。这款机器人目前正在进行人体临床试验,Ediatx表示预计今年将获得FDA批准。另一家初创公司BioNaut Labs迄今已获得超过6,300万美元风险投资,其正在开发的微型机器人可以注射到人体脑脊液中,通过磁铁导引到大脑,用于治疗某些脑肿瘤或其他脑部疾病。FDA已批准BioNaut测试其机器人用于治疗某些脑肿瘤和一种罕见的儿科脑病。
一位外科医生手中拿着Robeauté的微型机器人。机器人位于细线的末端。它被设计为可在人脑中独立游走,用于协助外科医生进行肿瘤或其他病变脑组织的活检。
资深机器人专家和计算机科学家伯特兰·狄勃拉是Robeauté的联合创始人兼首席执行官,他花了几十年时间设计用于深海、放射性场所和外太空等极端环境的机器人。但在母亲被诊断出患有无法手术治疗的胶质母细胞瘤后,他开始致力于研究可在人体大脑内操作的机器人。他表示:“这种情况令人束手无策。我创业的这个想法实际上源于无法到达大脑中的重要区域所带来的痛苦和挫败感。”
在看过《神奇旅程》这部电影之后,狄勃拉开始思考为什么机器人专家现在无法真正创造出微型载体,像电影中出现的微型潜艇那样在人体内游走。
2017年,他与约安娜·考特茨共同创立了这家公司。在2015年第21届联合国气候变化大会(COP21)巴黎气候谈判期间,考特茨曾与狄勃拉的一位朋友合作,担任公共艺术设施的运营经理,在每天晚上使用一系列先进技术将埃菲尔铁塔变成各种树木构成的虚拟森林。(公众在智能手机应用上创作的虚拟树木会在埃菲尔铁塔上显示,而该项目则会在全球七个重新造林项目之一中,为每一棵虚拟树木种植一棵真实的树木。)考特茨现任Robeauté的首席运营官。
Robeauté必须解决如何创造出足够小的机器人,使其能够在大脑内运行且不会造成损伤。这需要在机器人技术、电子技术和精密加工方面取得技术突破。该公司的团队已经获得了50多项与其微创手术机器人开发相关的创新专利。在谈到开发微型机器人的过程时,狄勃拉表示:“这个过程困难重重。这需要多个构建模块,并且我们花了五年时间,通过与不同实验室合作,才将所有这些初始构建模块组合在一起。这个过程跨越了多个学科。”
Robeauté的机器人由世界上最小的车载化引擎驱动一个微型推进器,机器人靠它来撬开患者脑组织中的初始裂缝。然后,它利用周围组织本身作用在机器人两侧的力推动其穿过大脑。这款机器人被设计为可在大脑的细胞外基质中移动。细胞外基质是由碳水化合物和其他蛋白质组成的三维结构,包围着脑细胞,为大脑结构提供一种物理支撑。它还会保护神经元,并在调节其功能方面发挥一定作用。机器人在这种基质中移动,不会伤害任何脑细胞。
机器人在基质中沿着一条路线推进到由外科医生使用磁共振扫描和其他脑成像方法获得的详细三维脑图预先编程的目标组织。但Robeauté必须开发软件,包括各种机器学习技术,使机器人能够在细胞外基质中确定方向,并沿正确路径到达目标脑区域。狄勃拉将这种导航系统比作一种大脑的三维GPS。
机器人后面连接着一根非常细的线缆,使其能够与安装在外部计算机上的引导和控制软件通信,并将数据回传给操作它的外科医生。这条线缆还能维持一条路径,外科医生可以通过该路径将微创手术工具或可能的药物传递给机器人,并且机器人可以从大脑深处将组织样本发送回外科医生,无需机器人退出大脑才能带回样本。
当今大多数神经外科工具和探针存在的最大问题之一在于它们是线性的——它们只能沿直线路径,从大脑表面上的首次插入点到达部分大脑区域。狄勃拉表示,相比之下,Robeauté的机器人可以沿着大脑中的曲线路径前进,通过机器人最不可能损害重要脑区域的路径接近病变组织。他还表示,机器人可以从单个进入点访问肿瘤或病变的多个位置,这是现有脑活检工具无法实现的。
从肿瘤的多个位置进行组织采样,被越来越多人认为是对某些癌症进行准确基因分析的关键,因为即使同一处肿瘤的不同细胞也可能具有略微不同的基因组成,并且蛋白质表达可能存在差异。这些信息反过来对于找到最有效的治疗方案至关重要。
Plural的合伙人伊恩·霍格思表示:“Robeauté的技术不仅有可能改变神经外科手术,它还可能从根本上改变制药公司为患者找到最佳解决方案的方式。”
考特茨表示,迄今为止神经外科医生一直是Robeauté最大的支持者之一。她表示:“我们很快看到,Robeauté的想法在医学界和科术界引起激烈反响,许多人为我们打开了大门,并希望能为实现这一使命尽一份力。他们认识到对这种解决方案的需求,以及实现这一目标的智力挑战。”
狄勃拉表示,直到公司于2021年12月在动物尸体内对其微型机器人进行首次验证测试,他和团队其他成员才清楚公司实际上可以取得成功。此后,该公司在人类遗体的大脑中测试了该产品,并进行了动物活体测试。公司目前雇佣了大约20人,其中大多数是科学家。该公司从索邦大学(Sorbonne)的机器人实验室以及世界各地聘请了才华横溢的研究人员。(财富中文网)
译者:刘进龙
审校:汪皓
伯特兰·狄勃拉(左)与约安娜·考特茨是巴黎初创公司Robeauté的两位联合创始人。该公司开发的微型机器人可以在人脑中协助进行外科手术。该公司刚刚获得2,800万美元风险投资。它希望其微型机器人能够获得美国联邦食品药品管理局批准用于人类临床试验。COURTESY OF ROBEAUTÉ
1966年的科幻电影《神奇旅程》(Fantastic Voyage)想象出一种科技,可以将人缩小到微观尺寸,然后乘坐一艘微型潜艇在人体内旅行,并修复一位受伤科学家大脑中的血栓。
总部位于巴黎的初创公司Robeauté日前宣布获得2,800万美元风险投资,该公司的目标是将这种科幻概念变为现实。当然,该公司的技术并非将人类缩小,而是开发出一种可在人脑中游走的自推进微型机器人,长度仅为1.8毫米,约相当于一粒大米的大小,可以协助神经外科医生进行手术。Robeauté将采集组织样本用于活体检查作为首个应用场景,但该公司希望其设计的机器人能够成为多用途载体,最终可以将癌症药物直接输送到无法手术和难治疗的脑肿瘤,或将电极植入大脑深处,用于治疗帕金森氏症或其他脑部疾病。
A轮融资由伦敦的Plural、Cherry Ventures和Kindred Ventures共同领投。其他参与融资的投资者包括LocalGlobe、Think.Health和之前的投资者APEX Ventures。总部位于慕尼黑的Brainlab以战略投资者的身份参与了融资。Brainlab开发协助手术和放射治疗的软件和医疗设备。
Robeauté计划利用这笔资金帮助其获得美国食品药品管理局(U.S. Food and Drug Administration)的批准,以开始其微型机器人的人体临床测试。该机器人已成功在活体动物中完成试验。该公司计划在2026年进行初步人体试验,并在美国开设办事处。
在可在人体内使用的微型甚至纳米级机器人领域,Robeauté并不是唯一一家进行创新的公司。硅谷初创公司Ediatx开发的Pillbot,是一种可以吞咽的小型机器人,可以将人体消化道内的图像和其他数据无线回传给医生。这款机器人目前正在进行人体临床试验,Ediatx表示预计今年将获得FDA批准。另一家初创公司BioNaut Labs迄今已获得超过6,300万美元风险投资,其正在开发的微型机器人可以注射到人体脑脊液中,通过磁铁导引到大脑,用于治疗某些脑肿瘤或其他脑部疾病。FDA已批准BioNaut测试其机器人用于治疗某些脑肿瘤和一种罕见的儿科脑病。
一位外科医生手中拿着Robeauté的微型机器人。机器人位于细线的末端。它被设计为可在人脑中独立游走,用于协助外科医生进行肿瘤或其他病变脑组织的活检。
资深机器人专家和计算机科学家伯特兰·狄勃拉是Robeauté的联合创始人兼首席执行官,他花了几十年时间设计用于深海、放射性场所和外太空等极端环境的机器人。但在母亲被诊断出患有无法手术治疗的胶质母细胞瘤后,他开始致力于研究可在人体大脑内操作的机器人。他表示:“这种情况令人束手无策。我创业的这个想法实际上源于无法到达大脑中的重要区域所带来的痛苦和挫败感。”
在看过《神奇旅程》这部电影之后,狄勃拉开始思考为什么机器人专家现在无法真正创造出微型载体,像电影中出现的微型潜艇那样在人体内游走。
2017年,他与约安娜·考特茨共同创立了这家公司。在2015年第21届联合国气候变化大会(COP21)巴黎气候谈判期间,考特茨曾与狄勃拉的一位朋友合作,担任公共艺术设施的运营经理,在每天晚上使用一系列先进技术将埃菲尔铁塔变成各种树木构成的虚拟森林。(公众在智能手机应用上创作的虚拟树木会在埃菲尔铁塔上显示,而该项目则会在全球七个重新造林项目之一中,为每一棵虚拟树木种植一棵真实的树木。)考特茨现任Robeauté的首席运营官。
Robeauté必须解决如何创造出足够小的机器人,使其能够在大脑内运行且不会造成损伤。这需要在机器人技术、电子技术和精密加工方面取得技术突破。该公司的团队已经获得了50多项与其微创手术机器人开发相关的创新专利。在谈到开发微型机器人的过程时,狄勃拉表示:“这个过程困难重重。这需要多个构建模块,并且我们花了五年时间,通过与不同实验室合作,才将所有这些初始构建模块组合在一起。这个过程跨越了多个学科。”
Robeauté的机器人由世界上最小的车载化引擎驱动一个微型推进器,机器人靠它来撬开患者脑组织中的初始裂缝。然后,它利用周围组织本身作用在机器人两侧的力推动其穿过大脑。这款机器人被设计为可在大脑的细胞外基质中移动。细胞外基质是由碳水化合物和其他蛋白质组成的三维结构,包围着脑细胞,为大脑结构提供一种物理支撑。它还会保护神经元,并在调节其功能方面发挥一定作用。机器人在这种基质中移动,不会伤害任何脑细胞。
机器人在基质中沿着一条路线推进到由外科医生使用磁共振扫描和其他脑成像方法获得的详细三维脑图预先编程的目标组织。但Robeauté必须开发软件,包括各种机器学习技术,使机器人能够在细胞外基质中确定方向,并沿正确路径到达目标脑区域。狄勃拉将这种导航系统比作一种大脑的三维GPS。
机器人后面连接着一根非常细的线缆,使其能够与安装在外部计算机上的引导和控制软件通信,并将数据回传给操作它的外科医生。这条线缆还能维持一条路径,外科医生可以通过该路径将微创手术工具或可能的药物传递给机器人,并且机器人可以从大脑深处将组织样本发送回外科医生,无需机器人退出大脑才能带回样本。
当今大多数神经外科工具和探针存在的最大问题之一在于它们是线性的——它们只能沿直线路径,从大脑表面上的首次插入点到达部分大脑区域。狄勃拉表示,相比之下,Robeauté的机器人可以沿着大脑中的曲线路径前进,通过机器人最不可能损害重要脑区域的路径接近病变组织。他还表示,机器人可以从单个进入点访问肿瘤或病变的多个位置,这是现有脑活检工具无法实现的。
从肿瘤的多个位置进行组织采样,被越来越多人认为是对某些癌症进行准确基因分析的关键,因为即使同一处肿瘤的不同细胞也可能具有略微不同的基因组成,并且蛋白质表达可能存在差异。这些信息反过来对于找到最有效的治疗方案至关重要。
Plural的合伙人伊恩·霍格思表示:“Robeauté的技术不仅有可能改变神经外科手术,它还可能从根本上改变制药公司为患者找到最佳解决方案的方式。”
考特茨表示,迄今为止神经外科医生一直是Robeauté最大的支持者之一。她表示:“我们很快看到,Robeauté的想法在医学界和科术界引起激烈反响,许多人为我们打开了大门,并希望能为实现这一使命尽一份力。他们认识到对这种解决方案的需求,以及实现这一目标的智力挑战。”
狄勃拉表示,直到公司于2021年12月在动物尸体内对其微型机器人进行首次验证测试,他和团队其他成员才清楚公司实际上可以取得成功。此后,该公司在人类遗体的大脑中测试了该产品,并进行了动物活体测试。公司目前雇佣了大约20人,其中大多数是科学家。该公司从索邦大学(Sorbonne)的机器人实验室以及世界各地聘请了才华横溢的研究人员。(财富中文网)
译者:刘进龙
审校:汪皓
Bertrand Duplat, left, and Joana Cortocci are the two cofounders of Robeauté, a Paris-based startup developing a microrobot that can travel inside the human brain to assist in surgical procedures. The company just secured an additional $28 million in venture capital funding as it looks towards FDA approval for human clinical trials of its microrobot.
The 1966 science fiction film Fantastic Voyage imagined a technology that could shrink people to microscopic size so they could use a tiny submarine to travel through a person’s body and repair a blood clot in an injured scientist’s brain.
Today a Paris-based startup called Robeauté announced it has secured $28 million in venture capital funding to essentially make this sci-fi concept a reality. Well, not the shrinking people part. The company has created a self-propelled microrobot, just 1.8 millimeters long—approximately the size of a grain of rice—that can travel inside the human brain to assist neurosurgeons. The company is targeting tissue sample collection for biopsies as its first use case, but Robeauté hopes it has designed its robot to be a cargo-agnostic carrier that could eventually be used to deliver cancer drugs directly to otherwise inoperable and hard-to-treat brain tumors or implant electrodes deep inside the brain to provide treatments for Parkinson’s or other brain disorders.
The Series A funding round is being co-led by London-based Plural, Cherry Ventures, and Kindred Ventures. Other investors participating in the funding include LocalGlobe, Think.Health, and a previous investor APEX Ventures. Also participating in the funding round as a strategic investor is Brainlab, a Munich-based company that makes software and medical devices to assist in surgery and radiotherapies.
Robeauté plans to use the funding to help it gain U.S. Food and Drug Administration approval to begin human clinical testing of its microrobot, which has already been successfully trialled in living animals. The company is targeting 2026 for initial human trials. It also plans to open offices in the U.S.
Robeauté is not the only company pioneering micro and even nanoscale robots for use inside the human body. Ediatx, a Silicon Valley startup, has developed Pillbot, a tiny robot that a person can swallow and that can wirelessly transmit images and other data back to doctors from inside a person’s digestive tract. It’s currently undergoing human clinical trials and Ediatx has said it anticipates receiving FDA approval this year. BioNaut Labs, another startup that has attracted more than $63 million in venture capital funding to date, is working on robots small enough to be injected into the body’s cerebrospinal fluid and which can then be guided to the brain using magnets in order to treat certain brain tumors or other brain disorders. The FDA has granted BioNaut clearance to test its robots in the treatment of certain brain tumors and a rare pediatric brain disease.
Robeauté’s microrobot being held by a surgeon. The robot itself is at the end of the thin wire. It is designed to travel independently through the brain to assist surgeons in taking biopsies of tumors or other diseased brain tissue.
PHOTO COURTESY OF ROBEAUTÉ
Veteran roboticist and computer scientist Bertrand Duplat, Robeauté’s cofounder and CEO, spent decades designing robots for extreme environments, including in the depths of the ocean, radioactive sites, and in outer space. But he turned his attention to robots that might be able to operate inside the human brain after his mother was diagnosed with an inoperable glioblastoma. “It was impossible to do anything,” he said. “The idea really came out of the pain and frustration at the inability to reach any of these meaningful areas of the brain.”
Duplat had seen Fantastic Voyage, and he began to wonder why roboticists couldn’t now actually create tiny vehicles to travel inside the body similar to the microsubmarine that appears in the movie.
In 2017, he cofounded the company with Joana Cartocci, who had worked with one of Duplat’s friends as the operations manager for the public art installation that used a range of advanced technologies to turn the Eiffel Tower into a virtual forest of individualized trees every night during the 2015 COP21 climate talks in Paris. (The project planted a real tree in one of seven reforestation projects around the world for each virtual tree that the public created on a smartphone app to be displayed on the monument.) She is now Robeauté’s chief operations officer.
The company had to figure out how to create a robot small enough to operate inside the brain without causing damage. Doing so required making multiple advances in robotics, electronics, and microfabrication. The team has been granted more than 50 patents for innovations related to their microsurgical robot’s development. “It was crazily hard,” Duplat said of the process to develop the company’s microrobot. “It required multiple building blocks, and it took five years to get all these initial building blocks put together, working with different labs. It was very interdisciplinary.”
Robeauté’s robot includes the world’s smallest vehicle-mounted engine which powers a tiny propeller that the robot uses to pry open an initial crack in a patient’s brain tissue. It then uses the force of the surrounding tissue itself acting on the sides of the robot to propel it through the brain. The robot is designed to travel within the brain’s extracellular matrix, a three-dimensional structure composed of carbohydrates and other proteins that surround brain cells, providing a kind of physical scaffolding around which the brain is constructed. It also protects the neurons and plays some role in regulating their function. By traveling within this matrix, the robot is designed not to harm any of the brain cells as it moves.
The robot follows a course through this matrix to a target tissue that is preprogrammed by surgeons using detailed three-dimensional brain maps derived from MRI scans and other brain imaging methods. But Robeauté had to develop software, including various machine learning techniques, that let the robot orient itself within the extracellular matrix and follow the correct path to the target brain region. Duplat compares this navigational system to a kind of three-dimensional GPS for the brain.
The robot trails a very fine wire behind it that lets it communicate with its guidance and control software, which is housed on a computer external to the tiny robot, as well send data back to the surgeons operating it. The wire also maintains a pathway that surgeons can use to relay microsurgical tools or possibly drugs to the robot, and that might allow the robot to send tissue samples back to the surgeons from deep inside the brain without the robot having to exit the brain to bring back the sample.
One of the biggest issues with the majority of today’s neurosurgical tools and probes is that they are linear—they can only access portions of the brain that are in a direct line from the point on the surface of the brain where they are first inserted. Robeauté’s robot, by contrast, can follow curved paths through the brain, approaching diseased tissue via routes where the robot is least likely to damage vital brain regions, Duplat said. He also said the robot can access multiple locations on a tumor or lesion from a single entry point, something that is not possible with existing brain biopsy tools.
Taking tissue samples from multiple places on a tumor is increasingly seen as vital for conducting an accurate genetic analysis of certain cancers, since different cells even in the same tumor can have slightly different genetic compositions and can express proteins differently. This information is, in turn, important for finding the most effective possible treatment.
“Robeauté’s technology doesn’t just have the potential to transform neurosurgery—it could also fundamentally change how drug companies find the best solutions for patients,” Ian Hogarth, a partner at Plural, said.
Cartocci said that neurosurgeons have been among Robeauté’s biggest supporters to date. “We very quickly saw the medical community response and scientific and technical community response [to Robeauté’s idea] was overwhelming and so many people opened doors for us and wanted to be part of the mission,” she said. “They recognized the need for this solution and they recognized the intellectual challenge of trying to achieve it.”
Duplat said it was only when the company conducted its first validation tests of its microrobot in animal cadavers in December 2021 that it became clear to him and the rest of the team that the company could actually succeed. The company has since tested the product in the brains of human cadavers, as well as conducting live animal tests. The company currently employs about 20 people, the majority of them scientists. It has hired talented researchers from the robotics lab at the Sorbonne, as well as from throughout the world.